356 resultados para Larvae.
Resumo:
Dr. Charles M. Breder participated on the 1934 expedition of the Atlantis from Woods Hole, Massachusetts to Panama and back and kept a field diary of daily activities. The Atlantis expedition of 1934, led by Prof. A. E. Parr, was a milestone in the history of scientific discovery in the Sargasso Sea and the West Indies. Although naturalists had visited the Sargasso Sea for many years, the Atlantis voyage was the first attempt to investigate in detailed quantitative manner biological problems about this varying, intermittent ‘false’ bottom of living, floating plants and associated fauna. In addition to Dr. Breder, the party also consisted of Dr. Alexander Forbes, Harvard University and Trustee of the Woods Hole Oceanographic Institution (WHOI); T. S. Greenwood, WHOI hydrographer; M. D. Burkenroad, Yale University’s Bingham Laboratory, carcinology and Sargasso epizoa; M. Bishop, Peabody Museum of Natural History, Zoology Dept., collections and preparations and H. Sears, WHOI ichthyologist. The itinerary included the following waypoints: Woods Hole, the Bermudas, Turks Islands, Kingston, Colon, along the Mosquito Bank off of Nicaragua, off the north coast of Jamaica, along the south coast of Cuba, Bartlett Deep, to off the Isle of Pines, through the Yucatan Channel, off Havana, off Key West, to Miami, to New York City, and then the return to Woods Hole. During the expedition, Breder collected rare and little-known flying fish species and developed a method for hatching and growing flying fish larvae. (PDF contains 48 pages)
Resumo:
Didemnum sp. A is a colonial ascidian or “sea squirt” of unknown geographic origin. Colonies of Didemnum sp. A were first documented in U.S. waters in 1993 at Damariscotta River, Maine and San Francisco Bay, California. An alarming number of colonies have since been found at several locations in New England and along the West Coast of the contiguous continental United States. Originally believed to be restricted to artificial structures in nearshore habitats, such as ports and marinas, colonies of Didemnum sp. A have also been discovered on a gravel-pavement habitat on Georges Bank at depths of 40-65m. The wide distribution of Didemnum sp. A, the presence of colonies on an important offshore fishing ground, and the negative economic impacts that other species of noninidigenous ascidians have had on aquaculture operations have raised concerns about the potential impacts of Didemnum sp. A. We reviewed the available information on the biology and ecology of Didemnum sp. A and potentially closely related species to examine the environmental and socioeconomic factors that may have influenced the introduction, establishment and spread of Didemnum sp. A in U.S. waters, the potential impacts of this colonial ascidian on other organisms, aquaculture, and marine fisheries, and the possibility that it will spread to other U.S. waters. In addition, we present and discuss potential management objectives for minimizing the impacts and spread of Didemnum sp. A. Concern over the potential for Didemnum sp. A to become invasive stems from ecological traits that it shares with other invasive species, including the ability to overgrow benthic organisms, high reproductive and population growth rates, ability to spread by colony fragmentation, tolerance to a wide range of environmental conditions, apparent scarcity of predators, and the ability to survive in human dominated habitats. At relatively small spatial scales, species of Didemnum and other nonindigenous ascidians have been shown to alter the abundance and composition of benthic assemblages. In addition, the Canadian aquaculture industry has reported that heavy infestations of nonindigenous ascidians result in increased handling and processing costs. Offshore fisheries may also suffer where high densities of Didemnum sp. A may alter the access of commercially important fish species to critical spawning grounds, prey items, and refugia. Because colonial ascidian larvae remain viable for only 12–24hrs, the introduction and spread of Didemnum sp. A across large distances is thought to be predominantly human mediated; hull fouling, aquaculture, and ballast water. Recent studies suggest that colony growth rates decline when temperatures exceed 21 ºC for 7 consecutive days. Similarly, water temperatures above 8 to 10 ºC are necessary for colony growth; however, colonies can survive extended periods of time below this temperature threshold as an unidentified overwintering form. A qualitative analysis of monthly mean nearshore water temperatures suggest that new colonies of Didemnum will continue to be found in the Northeast U.S., California Current, and Gulf of Alaska LMEs. In contrast, water temperatures become less favorable for colony establishment in subarctic, subtropical, and tropical areas to the north and south of Didemnum’s current distribution in cool temperate habitats. We recommend that the Aquatic Nuisance Species Task Force serve as the central management authority to coordinate State and Federal management activities. Five objectives for a Didemnum sp. A management and control program focusing on preventing the spread of Didemnum sp. A to new areas and limiting the impacts of existing populations are discussed. Given the difficulty of eradicating large populations of Didemnum sp. A, developing strategies for limiting the access of Didemnum sp. A to transport vectors and locating newly established colonies are emphasized. (PDF contains 70 pages)
Resumo:
Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)
Resumo:
Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)
Resumo:
Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)
Resumo:
The communities associated with Mytilus californianus (mussel) beds from 20 geographic sites in southern California were examined. The study areas included six mainland sites - Government Point, Goleta Point, Ventura, Corona del Mar, Carlsbad, and San Diego,and two sites on opposite sides of seven offshore islands - San Miguel Island, Santa Rosa Island, Santa Cruz Island, Anacapa Island, San Nicholas Island, Santa Cruz Island and San Clemente Island. : The mussel communities from all areas contributed to the master species list which now encompasses conservatively, 610 species of animals and 141 species of algae. The most diverse collection came from Cat Rock, Anacapa Island where the mussel beds supported 174 species of invertebrates. The lowest diversity was recorded for mussel beds from Ben Weston, Santa Catalina Island which contained 46 species. In general, the island mussel beds supported a greater diversity of both animals and plants. Mussel community samples were collected from upper and lower intertidal areas occupied by the mussel beds within a locality. Community differences in both composition and abundance were associated with these collections. Overall. community similarity analysis revealed five major patterns which corresponded to characteristic species assemblages occupying the mussel beds from the various geographic areas. The patterns included: (1) clusters of localities which display a north-south geographic pattern with respect to the similarity of their respective mussel communities, (2) a separation of selected island and mainland communities because of dissimilarities in their species composition, (3) differences between mussel communities. on opposite sides of the offshore islands, (4) clusters of species whose highest abundances characterize selected localities, (5) species groups ubiquitous to all mussel beds examined. The results of the community analysis further suggest that predictions can be made delineating the probable mussel community inhabitants of areas not sampled. The species distribution patterns observed appear to correspond in part to the influence of currents and water masses which bear planktonic larvae and impinge on selected localities. The most important mussel bed features associated with community differences were quantitative and qualitative differences in the potential microhabitats. Those features associate~ with greater species diversity include the pore base of coarse fraction shell and rock debris, skewness and kurtosis of the sediment grain-size distributions and mussel bed thickness. Those features associated with lower species diversity included the quantity of tar. and rock and shell debris trapped within the mussel bed. (PDF contains 51 pages)
Resumo:
Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
This regional atlas summarizes and illustrates the distribution and abundance patterns of fish eggs and larvae of 102 taxa within 34 families found in the Northeast Pacific Ocean including the Bering Sea, Gulf of Alaska, and U.S. west coast ecosystems. Data were collected over a 20+ year period (1972–1996) by the Recruitment Processes Program of the Alaska Fisheries Science Center (AFSC). Ichthyoplankton catch records used in this atlas were generated from 11,379 tows taken during 100 cruises. For each taxon, general life history data are briefly summarized from the literature. Published information on distribution patterns of eggs and larvae are reviewed for the study area. Data from AFSC ichthyoplankton collections were combined to produce an average spatial distribution for each taxon. These data were also used to estimate mean abundance and percent occurrence by year and month, and relative abundance by larval length and season. Abundance from each tow was measured as catch per 10 m2 surface area. A larval distribution and abundance map was produced with a geographic information system using ArcInfo software. For taxa with identifiable pelagic eggs, distribution maps showing presence or absence of eggs are presented. Presence or absence of adults in the study area is mapped based on recent literature and data from AFSC groundfish surveys. Distributional records for adults and early life history stages revealed several new range extensions. (PDF file contains 288 pages.)
Resumo:
This dissertation: 1) determines the factor(s) responsible for spawning induction in NematosteJla vectensis; 2) isolates, describes, and documents the source of jelly from egg masses of N. vectensis; and 3) describes N. vectensis' early development. Namatostella vectensis were maintained on a 7-day mussel feeding/water change regime over 159 days. Within 36 hours of mussel feeding/water change. 69.1% of females and 78.5% of males spawned reliably. Through manipulation of feeding, water change, oxygen and nitrogenous waste concentrations, spawning induction was found to be triggered by the oxygen concentration associated with water change, and not by feeding. Ammonia, anemones' major waste product, inhibited this induction in a concentration-dependent manner. Female N. vectensis release eggs in a persistent jellied egg mass which is unique among the Actiniaria. The major component of this egg mass jelly was a positive periodic acid-Schiffs staining, 39.5-40.5 kD glycoprotein. Antibodies developed in rabbits against this glycoprotein bound to jelly of intact egg masses and to granules (~ 2.8 IJm in diameter) present in female anemone mesenteries and their associated filaments. Antibodies did not label male tissues. Nematostella vecfensis embryos underwent first karyokinesis -60 minutes following the addition of sperm to eggs. Second nuclear division took place, followed by first cleavage, 90-120 minutes later. Each of the 4 blastomeres that resulted from first cleavage contained a single nucleus. Arrangement of these blastomeres ranged from radial to pseudospiral. Embryonic development was both asynchronous and holoblastic. Following formation of the 4-cell stage, 71% of embryos proceeded to cleave again to form an 8-cell stage. In each of the remaining 29% of embryos, a fusion of from 2-4 blastomeres resulted in 4 possible patterns which had no affect on either cleavage interval timing or subsequent development. The fusion event was not due to ooplasmic segregation. Blastomeres isolated from 4-celled embryos were regulative and developed into normal planula larvae and juvenile anemones that were 1/4 the size of those that developed from intact 4-celled embryos. Embryos exhibiting the fusion phenomenon were examined at the fine structural level. The fusion phenomenon resulted in formation of a secondary syncytium and was not a mere compaction of blastomeres.
Resumo:
Polydora nuchalis Woodwick, 1953 (Polychaeta: Spionidae) is a protandric hermaphrodite commonly inhabiting intertidal mud flats in southern California. The species exhibits lecithotrophic larval development and adelphophagia. Reproduction of P. nuchalis was monitored for a year at four sites: Catalina Harbor, San Gabriel River, Huntington Harbour, and Malibu Lagoon. Females deposited from 11 to 31 egg capsules in their tubes, with up to 230 eggs per capsule. An average of 3% of the eggs developed into larvae: the remaining were nurse eggs serving as food for the developing larvae. Reproductive output was quantified by determining the number and size of larvae and nurse eggs for individual capsules. Significant differences among the four populations were found for all the quantified variables. In addition, two size classes of nurse eggs were found to exist in capsules from all of the sites. Egg capsules were found throughout the year at San Gabriel River, but none were found during the winter months at the remaining three sites. Size/frequency data for juveniles and adults of the Catalina Harbor population indicate an annual cycle of recruitment. The laboratory experiment consisted of a 3 x 3 x 2 £actor1al design with replication testing the effects of temperature, salinity, and food supply on growth and reproduction of P. nuchalis. Increasing temperature resulted in significantly increased survivorship, growth rates, and percentage reproduction. It also produced a significant decrease in the size of the nurse eggs and the volume of food per larva. The number of egg capsules was maximum at the intermediate temperature. Increasing the salinity resulted in significant increases in survivorship and Class I nurse egg size. Increaaing food availability produced a significant increase in the percentage of worms reproducing. The interactive effect of salinity and £ood level produced significant changes in the number of larvae per capsule and the number of nurse eggs per capsule. However, the number of nurse eggs per larva did not differ significantly among the experimental treatment groups. (PDF contains 129 pages)
Resumo:
Developmental stages of 22 species representing 16 genera of agonid fishes occurring in the northeastern Pacific Ocean from San Francisco Bay to the Arctic Ocean are presented. Three of these species also occur in the North Atlantic Ocean. Larval stages of nine species are described for the first time. Additional information or illustrations intended to augment original descriptions are provided for eight species. Information on five other species is provided from the literature for comparative purposes. The primary objective of this guide is to present taxonomic characters to help identify the early life history stages of agonid fishes in field collections. Meristic, morphometric, osteological, and pigmentation characters are used to identify agonid larvae. Meristic features include numbers of median-fin elements, pectoral-fin rays, dermal plates, and vertebrae. Eye diameter, body depth at the pectoral-fin origin, snout to first dorsal-fin length, and pectoral-fin length are the most useful morphological characters. Presence, absence, numbers, and/or patterns of dermal plates in lateral rows or on the ventral surface of the gut are also useful. Other important characters are the presence, absence, numbers, and ornamentation of larval head spines. Lastly, distinct pigmentation patterns are often diagnostic. The potential utility of larval characters in phylogenetic analysis of the family Agonidae is discussed. (PDF file contains 92 pages.)
Resumo:
The abundance and distribution of ichthyoplankton adjacent to live-bottom habitats (rock outcroppings containing rich, sessile invertebrate communities and many species of tropical and subtropical fishes) in open-shelf waters « 55-m isobath) in Onslow Bay, North Carolina, were investigated. Larvae of reef-associated genera, especially the economically important subtropical and tropical members of the families Haemulidae (Haemulon), Lutjanidae (Lutjanus and Rltomboplites), Serranidae (Mycteroperca and Epinephelus), and Sparidae (Calamus and Pagrus) were targeted. Larvae representing 40 families were collected in neuston tows. Commonly collected reef-associated families were Balistidae, Blenniidae (dominated by the reef-associated Parablennius marmoreus) , Mullidae, and Gobiidae. Larvae representing 70 families were collected in subsurface tows. Reef-associated families commonly collected included Apogonidae, Balistidae, Gobiidae, Haemulidae, LutJanidae, Scaridae, and Serranidae. Larval Haemulon sp (p)., Lutjanus sp(p)., and Rltomboplites aurorubens were commonly collected and thus it is likely that these taxa spawn in Onslow Bay and recruit to live-bottom sites within the area. Other families of fishes commonly collected but generally not considered reef-associated included Bothidae, Callionymidae, Carangidae, Clupeidae, Engraulidae, and Ophidiidae. Estuarine-dependent species (e.g. the clupeid Brevoortia tyrannus and the sciaenids Leiostomus xanthurus and Micropogonias undulatus) were an important component of the ichthyoplankton during late fall and winter. The frequent occurrence of larvae from oceanic species (e.g. gonostomatids and myctophids) indicated that Gulf Stream waters had intruded onto the shelf, transporting these larvae to open-shelf waters off North Carolina.(PDF file containes 36 pages.)
Resumo:
The distribution and abundance of ichthyoplankton was investigated from November 1979 to March 1980 along a transect from coastal to continental slope waters in Onslow Bay, North Carolina. Representatives of 66 families were collected; 24 of which were tropical families, a category that also includes families of typically oceanic and deep-sea fishes. Larvae of tropical species were collected in coastal and shelf waters, demonstrating the intrusion of Gulf Stream waters onto the continental shelf. From December through March, frontal waters that separated cold open-shelf surface waters from warm Gulf Stream surface waters were observed. Higher abundances of fish larvae were sometimes, but not consistently, associated with frontal waters. A great diversity of taxa was collected in offshore waters, and densities of larvae were low in coastal waters; low densities were attributed to gear selectivity rather than low larval abundance. Larvae of commercially and recreationally important estuarine-dependent species, especially Leiostomus xanthus and Micropogonias undulatus, were dominant components of the ichthyoplankton. Representatives of the families Bothidae, Clupeidae, Gadidae, Gonostomatidae, Myctophidae, Ophidiidae, and Sparidae were also important components of the ichthyoplankton. Larvae of species representing two strikingly different life history types-mesopelagic and estuarine-dependent frequently cooccurred.(PDF file contains 32 pages.)
Resumo:
Information on the biology and fisheries of cobia, Rachycentron canadum, is compiled and reviewed in the FAD species synopsis style. Topics include taxonomy, morphology, distribution, reproduction, pre-adult and adult stages, food, growth, migration, population characteristics, and various aspects of exploitation. Data and information were obtained from unpublished as well as published sources. Cobia, the only species in the family Rachycentridae, is a migratory pelagic fish that occurs in tropical and subtropical seas of the world, except in the central and eastern Pacific Ocean. In the western Atlantic Ocean, spawning occurs during the warm months. Eggs and larvae are planktonic. Females grow faster than males: at 1 year, females are 36 cm FL and 0.4 kg; at 4 years, 99 cm and 11 kg; and at 8 years, 137 cm and 31 kg. Comparable data for males are: at 1 year, 31 cm and 0.3 kg; 4 years, 82 cm and 6 kg; and 8 years, 108 cm and 15 kg. Sexual maturity is attained by males at about 52 cm FL in their second year and by females at about 70 cm in their third year. Fecundity for females 100-125 cm FL varies from 1.9 to 5.4 million eggs. Cobia favor crustaceans for food, but will feed on other invertebrates and fishes as well. They attain a maximum size of over 60 kg. Cobia are fished both commercially and recreationally. Commercially, they are usually caught incidentally in both hook-and-Iine and net fISheries. In the United States, which ranks behind Pakistan, Mexico, and the Philippines in commercial production of cobia, recreational landings exceed commercial landings by more than ten-fold. (PDF file contains 32 pages.)