170 resultados para Botany -- Juvenile literature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and Central and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and possible control and management strategies for the lionfish invasion. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To describe the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish mature relatively early and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish are not readily consumed by serranids, even after extreme periods of starvation. Last, I used a stage-based, matrix population model to estimate the scale of control that would be needed to reduce an invading population of lionfish. Together, this research provides the first comprehensive assessment on lionfish biology and ecology and explains a number of life history and ecological interactions that have facilitated the unprecedented and rapid establishment of this invasive finfish. Future research is needed to understand the scale of impacts that lionfish could cause, especially in coral reef ecosystems, which are already heavily stressed. This research further demonstrates the need for lionfish control strategies and more rigorous prevention and early detection and rapid response programs for marine non-native introductions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is summarized on juvenile salmonid distribution, size, condition, growth, stock origin, and species and environmental associations from June and August 2000 GLOBEC cruises with particular emphasis on differences related to the regions north and south of Cape Blanco off Southern Oregon. Juvenile salmon were more abundant during the August cruise as compared to the June cruise and were mainly distributed northward from Cape Blanco. There were distinct differences in distribution patterns between salmon species: chinook salmon were found close inshore in cooler water all along the coast and coho salmon were rarely found south of Cape Blanco. Distance offshore and temperature were the dominant explanatory variables related to coho and chinook salmon distribution. The nekton assemblages differed significantly between cruises. The June cruise was dominated by juvenile rockfishes, rex sole, and sablefish, which were almost completely absent in August. The forage fish community during June comprised Pacific herring and whitebait smelt north of Cape Blanco and surf smelt south of Cape Blanco. The fish community in August was dominated by Pacific sardines and highly migratory pelagic species. Estimated growth rates of juvenile coho salmon were higher in the GLOBEC study area than in areas farther north. An unusually high percentage of coho salmon in the study area were precocious males. Significant differences in growth and condition of juvenile coho salmon indicated different oceanographic environments north and south of Cape Blanco. The condition index was higher in juvenile coho salmon to the north but no significant differences were found for yearling chinook salmon. Genetic mixed stock analysis indicated that during June, most of the Chinook salmon in our sample originated from rivers along the central coast of Oregon. In August, chinook salmon sampled south of Cape Blanco were largely from southern Oregon and northern California; whereas most chinook salmon north of Cape Blanco were from the Central Valley in California.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life history aspects of larval and, mainly, juvenile spotted seatrout (Cynoscion nebulosus) were studied in Florida Bay, Everglades National Park, Florida. Collections were made in 1994−97, although the majority of juveniles were collected in 1995. The main objective was to obtain life history data to eventually develop a spatially explicit model and provide baseline data to understand how Everglades restoration plans (i.e. increased freshwater flows) could influence spotted seatrout vital rates. Growth of larvae and juveniles (<80 mm SL) was best described by the equation loge standard length = –1.31 + 1.2162 (loge age). Growth in length of juveniles (12–80 mm SL) was best described by the equation standard length = –7.50 + 0.8417 (age). Growth in wet weight of juveniles (15–69 mm SL) was best described by the equation loge wet-weight = –4.44 + 0.0748 (age). There were no significant differences in juvenile growth in length of spotted seatrout in 1995 between three geographical subdivisions of Florida Bay: central, western, and waters adjacent to the Gulf of Mexico. We found a significant difference in wet-weight for one of six cohorts categorized by month of hatchdate in 1995, and a significant difference in length for another cohort. Juveniles (i.e. survivors) used to calculate weekly hatchdate distributions during 1995 had estimated spawning times that were cyclical and protracted, and there was no correlation between spawning and moon phase. Temperature influenced otolith increment widths during certain growth periods in 1995. There was no evidence of a relationship between otolith growth rate and temperature for the first 21 increments. For increments 22–60, otolith growth rates decreased with increasing age and the extent of the decrease depended strongly in a quadratic fashion on the temperature to which the fish was exposed. For temperatures at the lower and higher range, increment growth rates were highest. We suggest that this quadratic relationship might be influenced by an environmental factor other than temperature. There was insufficient information to obtain reliable inferences on the relationship of increment growth rate to salinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A density prediction model for juvenile brown shrimp (Farfantepenaeus aztecus) was developed by using three bottom types, five salinity zones, and four seasons to quantify patterns of habitat use in Galveston Bay, Texas. Sixteen years of quantitative density data were used. Bottom types were vegetated marsh edge, submerged aquatic vegetation, and shallow nonvegetated bottom. Multiple regression was used to develop density estimates, and the resultant formula was then coupled with a geographical information system (GIS) to provide a spatial mosaic (map) of predicted habitat use. Results indicated that juvenile brown shrimp (<100 mm) selected vegetated habitats in salinities of 15−25 ppt and that seagrasses were selected over marsh edge where they co-occurred. Our results provide a spatially resolved estimate of high-density areas that will help designate essential fish habitat (EFH) in Galveston Bay. In addition, using this modeling technique, we were able to provide an estimate of the overall population of juvenile brown shrimp (<100 mm) in shallow water habitats within the bay of approximately 1.3 billion. Furthermore, the geographic range of the model was assessed by plotting observed (actual) versus expected (model) brown shrimp densities in three other Texas bays. Similar habitat-use patterns were observed in all three bays—each having a coefficient of determination >0.50. These results indicate that this model may have a broader geographic application and is a plausible approach in refining current EFH designations for all Gulf of Mexico estuaries with similar geomorphological and hydrological characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured growth and movements of individually marked free-ranging juvenile white shrimp (Litopenaeus setiferus) in tidal creek subsystems of the Duplin River, Sapelo Island, Georgia. Over a period of two years, 15,974 juvenile shrimp (40−80 mm TL) were marked internally with uniquely coded microwire tags and released in the shallow upper reaches of four salt marsh tidal creeks. Subsequent samples were taken every 3−6 days from channel segments arranged at 200-m intervals along transects extending from the upper to lower reach of each tidal creek. These collections included 201,384 juvenile shrimp, of which 184 were marked recaptures. Recaptured shrimp were at large an average of 3−4 weeks (range: 2−99 days) and were recovered a mean distance of <0.4 km from where they were initially marked. Mean residence times in the creek subsystems ranged from 15.2 to 25.5 days and were estimated from exponential decay functions describing the proportions of marked individuals recaptured with increasing days at large. Residence time was not significantly correlated with creek length (Pearson=−0.316, P=0.684 ), but there was suggestive evidence of positive associations with either intertidal (Pearson r=0.867, P=0.133) or subtidal (Pearson r=0.946, P=0.054) drainage area. Daily mean specific growth rates averaged 0.009 to 0.013 among creeks; mean absolute growth rates ranged from 0.56−0.84 mm/d, and were lower than those previously reported for juvenile penaeids in estuaries of the southeastern United States. Mean individual growth rates were not significantly different between years (t-test, P>0.30) but varied significantly during the season, tending to be greater in July than November. Growth rates were size-dependent, and temporal changes in size distributions rather than temporal variation in physical environmental factors may have accounted for seasonal differences in growth. Growth rates differed between creeks in 1999 (t-test, P<0.015), but not in 1998 (t-test, P>0.5). We suggest that spatial variation in landscape structure associated with access to intertidal resources may have accounted for this apparent interannual difference in growth response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A developmental series of larval and pelagic juvenile pygmy rockfish (Sebastes wilsoni) from central California is illustrated and described. Sebastes wilsoni is a non- commercially, but ecologically, important rockfish, and the ability to differentiate its young stages will aid researchers in population abundance studies. Pigment patterns, meristic characters, morphometric measurements, and head spination were recorded from specimens that ranged from 8.1 to 34.4 mm in standard length. Larvae were identified initially by meristic characters and the absence of ventral and lateral midline pigment. Pelagic juveniles developed a prominent pigment pattern of three body bars that did not extend to the ventral surface. Species identification was confirmed subsequently by using mitochondrial sequence data of four representative specimens of various sizes. As determined from the examination of otoliths, the growth rate of larval and pelagic juvenile pygmy rockfish was 0.28 mm/day, which is relatively slow in comparison to the growth rate of other species of Sebastes. These data will aid researchers in determining species abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval and juvenile development of finescale menhaden (Brevoortia gunteri) is described for the first time by using wild-caught individuals from Nueces Bay, Texas, and is compared with larval and juvenile development of co-occurring gulf menhaden (B. patronus). Meristics, morphometrics, and pigmentation patterns were examined as development proceeded. An illustrated series of finescale menhaden is presented to show changes that occurred during development. For finescale menhaden, transformation to the juvenile stage was completed by 17−19 mm standard length (SL). By contrast, transformation to the juvenile stage for gulf menhaden was not complete until 23−25 mm SL. Characteristics useful for separating larval and juvenile finescale menhaden from gulf menhaden included 1) the presence or absence of pigment at the base of the insertion of the pelvic fins; 2) the standard length at which medial predorsal pigment occurs; 3) differences in the number of dorsal fin ray elements; and, 4) the number of vertebrae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth, recruitment, and abundance of young-of-the-year (YOY) striped mullet (Mugil cephalus L.) in estuarine habitats in South Carolina from 1998 to 2000 were examined and compared to historical data (1986–91) of growth, recruitment, and abundance. Daily growth increments from the sagittal otoliths of juvenile striped mullet were validated by using fish immersed in oxytetracycline hydrochloride (OTC) for five hours from the Charleston Harbor Estuary system. The distribution of back-calculated birthdates indicated that striped mullet spawn from October to late April and estuarine recruitment occurs from January through May. Juveniles were more abundant in mesohaline and polyhaline salinity regimes but were found throughout the estuary. Juvenile growth after recruitment into the estuary can be described by the relationship Total length (mm) = 0.341 (Age)1.04 (r2=0.741, P=0.001). Growth of juveniles according to the analysis of size-frequency data from historical surveys (1986 to 1991) in the same estuaries gave the relationship Total length (mm) = 8.77 (month)1.12 (r2=0.950, P=0.001). The similarity in the growth curves for both groups of fish suggests that juvenile striped mullet in South Carolina have consistent annual growth during the first year of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore winter-spawned fishes dominate the nekton of south-eastern United States estuaries. Their juveniles reside for several months in shallow, soft bottom estuarine creeks and bays called primary nursery areas. Despite similarity in many nursery characteristics, there is, between and within species, variability in the occupation of these habitats. Whether all occupied habitats are equally valuable to individuals of the same species or whether most recruiting juveniles end up in the best habitats is not known. If nursery quality varies, then factors controlling variation in pre-settlement fish distribution are important to year-class success. If nursery areas have similar values, interannual variation in distribution across nursery creeks should have less effect on population sizes or production. I used early nursery period age-specific growth and mortality rates of spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus)—two dominant estuarine fishes—to assess relative habitat quality across a wide variety of nursery conditions, assuming that fish growth and mortality rates were direct reflections of overall physical and biological conditions in the nurseries. I tested the hypothesis that habitat quality varies for these fishes by comparing growth and mortality rates and distribution patterns across a wide range of typical nursery habitats at extreme ends of two systems. Juvenile spot and Atlantic croaker were collected from 10 creeks in the Cape Fear River estuary and from 18 creeks in the Pamlico Sound system, North Carolina, during the 1987 recruitment season (mid-March–mid-June). Sampled creeks were similar in size, depth, and substrates but varied in salinities, tidal regimes, and distances from inlets. Spot was widely distributed among all the estuarine creeks, but was least abundant in the creeks in middle reaches of both systems. Atlantic croaker occurred in the greatest abundance in oligohaline creeks of both systems. Instantaneous growth rates derived from daily otolith ages were generally similar for all creeks and for both species, except that spot exhibited a short-term growth depression in the upriver Pamlico system creeks—perhaps the result of the long migration distance of this species to this area. Spot and Atlantic croaker from upriver oligohaline creeks exhibited lower mortality rates than fish from downstream polyhaline creeks. These results indicated that even though growth was similar at the ends of the estuaries, the upstream habitats provided conditions that may optimize fitness through improved survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed ultrasonic transmitters to follow (for up to 48 h) the horizontal and vertical movements of five juvenile (6.8–18.7 kg estimated body mass) bluefin tuna (Thunnus thynnus) in the western North Atlantic (off the eastern shore of Virginia). Our objective was to document the fishes’ behavior and distribution in relation to oceanographic conditions and thus begin to address issues that currently limit population assessments based on aerial surveys. Estimation of the trends in adult and juvenile Atlantic bluefin tuna abundance by aerial surveys, and other fishery-independent measures, is considered a priority. Juvenile bluefin tuna spent the majority of their time over the continental shelf in relatively shallow water (generally less then 40 m deep). Fish used the entire water column in spite of relatively steep vertical thermal gradients (≈24°C at the surface and ≈12°C at 40 m depth), but spent the majority of their time (≈90%) above 15 m and in water warmer then 20°C. Mean swimming speeds ranged from 2.8 to 3.3 knots, and total distance covered from 152 to 289 km (82–156 nmi). Because fish generally remained within relatively con-fined areas, net displacement was only 7.7–52.7 km (4.1–28.4 nmi). Horizontal movements were not correlated with sea surface temperature. We propose that it is unlikely that juvenile bluefin tuna in this area can detect minor horizontal temperature gradients (generally less then 0.5°C/km) because of the steep vertical temperature gradients (up to ≈0.6°C/m) they experience during their regular vertical movements. In contrast, water clarity did appear to influence behavior because the fish remained in the intermediate water mass between the turbid and phytoplankton-rich plume exiting Chesapeake Bay (and similar coastal waters) and the clear oligotrophic water east of the continental shelf.