155 resultados para American pepper
Resumo:
Issues January - November/December 2013. (PDF contains 96 pages)
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) initiated a coral reef research program in 1999 to map, assess, inventory, and monitor U.S. coral reef ecosystems (Monaco et al. 2001). These activities were implemented in response to requirements outlined in the Mapping Implementation Plan developed by the Mapping and Information Synthesis Working Group (MISWG) of the Coral Reef Task Force (CRTF) (MISWG 1999). As part of the MISWG of the CRTF, NOS' Biogeography Branch has been charged with the development and implementation of a plan to produce comprehensive digital coral-reef ecosystem maps for all U.S. States, Territories, and Commonwealths within five to seven years. Joint activities between Federal agencies are particularly important to map, research, monitor, manage, and restore coral reef ecosystems. In response to the Executive Order 13089 and the Coral Reef Conservation Act of 2000, NOS is conducting research to digitally map biotic resources and coordinate a long-term monitoring program that can detect and predict change in U.S. coral reefs, and their associated habitats and biological communities. Most U.S. coral reef resources have not been digitally mapped at a scale or resolution sufficient for assessment, monitoring, and/or research to support resource management. Thus, a large portion of NOS' coral reef research activities has focused on mapping of U.S. coral reef ecosystems. The map products will provide the fundamental spatial organizing framework to implement and integrate research programs and provide the capability to effectively communicate information and results to coral reef ecosystem managers. Although the NOS coral program is relatively young, it has had tremendous success in advancing towards the goal to protect, conserve, and enhance the health of U.S. coral reef ecosystems. One objective of the program was to create benthic habitat maps to support coral reef research to enable development of products that support management needs and questions. Therefore this product was developed in collaboration with many U.S. Pacific Territory partners. An initial step in producing benthic habitat maps was the development of a habitat classification scheme. The purpose of this document is to outline the benthic habitat classification scheme and protocols used to map American Samoa, Guam and the Commonwealth of the Northern Mariana Islands. Thirty-two distinct benthic habitat types (i.e., four major and 14 detailed geomorphological structure classes; eight major and 18 detailed biological cover types) within eleven zones were mapped directly into a geographic information system (GIS) using visual interpretation of orthorectified IKONOS satellite imagery. Benthic features were mapped that covered an area of 263 square kilometers. In all, 281 square kilometers of unconsolidated sediment, 122 square kilometers of submerged vegetation, and 82.3 square kilometers of coral reef and colonized hardbottom were mapped.
Resumo:
Streamer tags are commonly used to study the ecology and population biology of the American lobster (Homarus americanus). Aquarium observations suggest that streamer tag loss, either through tag-induced mortality or tag shedding, is related to the molt stage of the lobster at the time of tagging, and the molting event itself. Tag-induced mortality, where lobsters did not molt, occurred within eleven and sixteen days following tagging for lobsters tagged in postmolt (4%) and late premolt (10%) stages, respectively; whereas no lobsters tagged in early premolt or intermolt stages died. Taginduced mortality at time of molting was observed for lobsters tagged in late premolt stage (11%), and tag shedding was observed for lobsters tagged both in early (25%) and late premolt (11%) stages, but was significantly higher (P=0.014) for lobsters tagged in early premolt stages. Autopsies revealed that lobsters died mainly of organ perforations (hepato-pancreas and pericardial sac) following the tagging process, and rupture of the dorsal thoraco-abdominal membrane during the molting process. The total tag loss was estimated at 4% for lobsters tagged after molting, and 27% and 31% for lobsters tagged in early and late premolt stages, respectively. There was no tag loss for lobsters tagged in the intermolt stage during four months of laboratory observations (July−October). To minimize streamer tag loss, lobsters should be tagged during the intermolt or postmolt stage. Based on field studies, recapture rates for lobsters tagged in premolt stage are always lower than those of lobsters tagged in postmolt stage. Furthermore, recapture rates during the second year, for lobsters that molt in the year following tagging, were drastically reduced, and no lobster was recaptured after four years at large. Finally, to account for tag loss during the first year at large, a minimal adjustment of 24.9% (SD 2.9%) and 4.4% (SD 1.6%) for the recapture rate of lobsters tagged immediately before and after the molting season, respectively, is recommended. Adjustments beyond one year at large are not recommended for the American lobster at this time.
Resumo:
The natural diet of 506 American lobsters (Homarus americanus) ranging from instar V (4 mm cephalothorax length, CL) to the adult stage (112 mm CL) was determined by stomach content analysis for a site in the Magdalen Islands, Gulf of St. Lawrence, eastern Canada. Cluster and factor analyses determined four size groupings of lobsters based on their diet: <7.5 mm, 7.5 to <22.5 mm, 22.5 to <62.5 mm, and ≥62.5 mm CL. The ontogenetic shift in diet with increasing size of lobsters was especially apparent for the three dominant food items: the contribution of bivalves and animal tissue (flesh) to volume of stomach contents decreased from the smallest lobsters (28% and 39%, respectively) to the largest lobsters (2% and 11%, respectively), whereas the reverse trend was seen for rock crab Cancer irroratus (7% in smallest lobsters to 53% in largest lobsters). Large lobsters also ate larger rock crabs than did small lobsters.
Resumo:
A total of 42,445 American lobsters (Homarus americanus) were tagged in thirty-one sites throughout the southwestern Gulf of St. Lawrence between 1980 and 1997. Results from the recapture of 8503 tagged lobsters showed small distances traveled between the release and the recapture position for animals ranging in size from 51 to 152 mm carapace length. The average distance traveled ranged from 2 km in parts of Baie des Chaleurs and western Cape Breton to 19 km in central Northumberland Strait. Lobsters moved generally along the shore (93% of the dispersion was in areas between the shore and the 20-m bathymetric contour). As a result, lobsters traveled longer distances in sites characterized by a gradually sloping bottom where the distance between the shore and the 20-m contour line was extensive in contrast to areas characterized by rapidly changing depths and by a relatively small amount of habitat shallower than 20 m. In the majority of sites (14 of 19) there was no significant difference between males and females in the average distance they traveled. In four of the five sites females moved farther than males. In general, the average distance traveled by berried females was shorter than that traveled by males or nonberried females. No relationship was observed between the distance traveled and the size of the animal. There was no strong evidence of a relationship between the average distance traveled and the number of days at liberty. In general, lobsters in the southwestern Gulf of St. Lawrence traveled short distances and dispersion was restricted to the nearshore habitat. Further, the distance traveled was not correlated to size, sex, or years at large. These findings show that there is little interaction between American lobsters from different fishing areas at the benthic level and that American lobster movements should have minimal consequences for management of the species in the southwestern Gulf of St. Lawrence.
Resumo:
Net catches from 1985–86 to 1994–95 at Pivers Island, North Carolina, indicated that glass-eel stage American eels (Anguilla rostrata) were recruited to the estuary from November to early May, with peak numbers in January, February, and March. There was no declining trend in recruitment over the years of sampling. Except for one year, there was no clear seasonal decrease in mean length. But shorter glass eels were older than longer glass eels, as judged by age within the glass eel growth zone of the otolith, suggesting that smaller fish took longer to arrive. The mean age of glass eels collected from the lower estuary and a freshwater site 9.5 km upriver differed by 8.4 d (36.2 vs. 44.6, respectively). Outer increments (30–35) of the otolith growth zone of glass eels from North Carolina were significantly wider than corresponding increments of otoliths from New Brunswick. Mean total ages of North Carolina, New Jersey, and New Brunswick elvers were 175.4, 201.2, and 209.3 d, corresponding to mean lengths of 55.9, 60.9, and 58.1 mm TL, respectively. The mean durations of glass-eel growth zones (44.6, 62.3, and 69.8) were in close agreement with those from previous studies, but total ages were not. This suggested that perhaps some finer (leptocephalus stage) increments were not detected by light microscopy, differences occurred in seasonal increment deposition, or absorption of the otolith material may have taken place during metamorphosis, rendering the aging of larvae inaccurate. Judging from the long recruitment period and seasonal uniformity in both mean age and length found in our study, the spawning period of American eels may be somewhat more protracted than previously considered.
Resumo:
The extreme phases of the Southern Oscillation (SO) have been linked to fairly persistent classes of circulation anomalies over the North Pacific and parts of North America. It has been more difficult to uncover correspondingly consistent patterns of surface temperature and precipitation over much of the continent. The few regions that appear to have consistent SO-related patterns of temperature and precipitation anomalies are identified and discussed. Also discussed are regions that appear to have strong SO-related surface anomalies whose sign varies from episode to episode.