18 resultados para toxicity effect
Resumo:
Clarias gariepinus fingerlings were exposed 96 hours under laboratory conditions using static bioassays with continuous aeration to determine acute toxicity of Datura innoxia root extract. The LC sub(50) of the exposed fingerlings was 128.83 mg/L. The fish exhibited loss of balance, respiratory distress and swam erratically just prior to death
Resumo:
The use of antibiotics in aquaculture has been limited. Scientifics seeking for natural substitutes to prevent of aquatic animals diseases. Considering seaweeds are rich of nutritions and bioactive compounds, the purpose of this study is: investigation the potential and use possibility of native seaweeds from Persian Gulf in shrimp aquculture industry to improve growth, survival of postlarvae and to resistance against pathogens such as vibriosis. For this propose 7 macroalgae species from Bushehr province coast, inclouding: green algae (C. iyengarii), brown algae (S. angutifolium and S. ilicifolium) and red algae (L. snyderiae, K. alvarezii and G. corticata) were collected and identified. Then seaweed extracts abtained by Water, Ethanol, Methanol and Chloroform solvents by soaking method. In vitro antibacterial activity of extracts against Gr+ bacteria (S. aureus and B. subtilis) and Gr- bacteria (V. harveyi, V. alginolyticus and E. coli) was conducted by Agar diffusion, MIC and MBC methods. Antioxidant activity also by DPPH and EC50 methods was investigated. According to results of these two tests four seaweeds species (S. angutifolium, L. snyderiae, K. alvarezii and G. corticata) were selected for use in shrimp postlarvae (PL22) diets by Bio-Encapsulation (Artemia enrichment). Before of enrichment, toxicity effect of extracts to Artemia nauplii were evaluated by determination of LC50 24 h method. From results of this section Ethanol extracts were selected to bioencapsulation. After encapsulation shrimp postlarvae divided to 12 groups in triplicate, namely: C-, C+, S (200), S (400), S (600), L(200), L(400), L(600), G(300), G(600), K(300) and K(600). During 30 days of reared period C- and C+ use of basal diet and unenriched Artemia, but the other groups use of basal diet and enriched Artemia. Except C-, the shrimps in first day of culture put in 107 cfu/ml v. harveyi suspension for 30 minutes, and after water exchange 10 ml of this dose was added to reared aquaria. After 30 days survival percentage, obtained weight and SGR% were investigated. To evaluate vibrio loading, every 10 days 5 postlarvae were sampled randomly for vibrio count. Results showed that vibrio count in C- was less than the others and in C+ was more than the others. In treatments vibrio count in L(200) was the most and L(600) was the less. Survival rate in C- was the most and after that G(600) with 79.4±6.6% and then S(300) and K(600) were 73.3±7.3% and 70.6±6.6% respectively that were significantly compare the other (P < 0.01). Also the C+ was the less with 33.3±6.6% that difference was significant (P< 0.01). In this study growth parameters of all groups that fed by enriched Artemia were better than C+ (P<0.05). After cultre period 10 shrimp of every aquarium disinfected and reared for 10 days like before treatment. After 10 days the shrimps were challenged by 3×108 cfu/ml V. harveyi and mortality was recorded for 7 days. The all of animals in C- were survive but more than 90% of C+ were dead. And survival in all of treatments were better the C+ (P<0.05). The study showed the ethanol extracts of selected seaweed from Persian Gulf is a good source for growth, Survival and disease control in shrimp larviculture.
Resumo:
The toxicity of xenobiotic in aquatic ecosystems is influenced by many factors such as ambient temperature, water hardness, pond soil type, etc. In the present study, it was observed that air temperature, water hardness and soil sediment have profound influence on the toxicity of deltamethrin to common carp fry (ay. length 3.5 ± 0.5 cm, ay. weight 0.58 ± 0.25 g); 96h LC(sub)50 values for common carp at 38.07 ± 2.20°C maximum and 27.86 ± 1.22°C minimum air temperature in soft and very hard water were 0.102 and 0.495 µg lˉ¹, respectively. This value had increased significantly to 2.37 and 3.02 µg at 30.55 ± 1.21°C maximum and 26.04 ± 0.61°C minimum air temperature, respectively. When sediment was included, 96h LC(sub)50 at 38.07°C maximum temperature in very hard water was 1.808 µg 1ˉ¹ and this had increased to 8.073 µg 1ˉ¹ when tested at 30.55°C maximum temperature. Due to the 7.5°C increase in maximum and 1.7°C in minimum temperature, toxicity increased significantly. Lower toxicity in very hard water in comparison to soft water may be due to the lower solubility of deltarnethrin and high level of calcium. Adsorption reaction of deltamethrin with clay, humus, FeOOH, MnOOH and particulate organic carbon, and complexation reaction with dissolved organic carbon were responsible for the lowered toxicity in the experiment with sediment. Exposure time had no significant effect on acute toxicity of deltamethrin.
Resumo:
Acetylcholinesterase and serum glutamate oxaloacetate transaminase enzymes have been used as marker monitoring the effect of neem seed based pesticide Neemta 2100 on the fish, Oreochromis mossambicus. Fishes exposed to sublethal concentrations of Neemta 2100 for acute periods of 24 and 48 hours were sacrificed to determine enzyme activities in serum affected due to toxicity. Laboratory studies of in vivo exposure of this pesticide showed synergistic inhibitory effect during acute period of toxicity. Acetylcholinesterase was noticed as 6.25 µm substrate hydrolyzed/mg protein/hour and serum glutamate oxaloacetate transaminase was noticed as 36.71 µm substrate hydrolyzed/mg protein/hour in control fish serum. Significant decrease in GOT level in Neemta 2100 treated fishes after short term exposure indicated its severe toxicity to fish.
Resumo:
The behaviour of metals in aquatic ecosystems is dependent on various environmental factors. Experiments were conducted in five different contact times (0.5, 2, 12, 24 and 48h) between soil sediment and mercury on Cyprinus carpio var communis. It was observed that contact time with soil sediment had significant effect in reducing the toxicity of mercury. Higher the time of contact, greater the effect. Medium hard water (150 mg/L CaC0 sub(3) of total hardness) had the highest effect as compared to other water in reducing the toxicity of mercury when combined with underlying soil sediment. With the increase in contact time, complexation and adsorption of inorganic mercury ions with the dissolved and particulate phases of water and soil sediment were increased; thereby bioaccumulation of mercury ions by scale carp was more. Applicability of the result of this experiment in natural ecosystems was also suggested.
Resumo:
INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)
Resumo:
This study examines acute toxicity of Raphia vinifera on fish leech, Piscicola geometra. The leeches with a mean total length of (TL) 4.2+1.0cm were exposed to various concentrations of both crude powdered and ethanolic extracts of the botanical. Median lethal concentration (LC50) was determined with static-renewal tests using logarithmic and arithmetic graphic methods. The LC50 (for 96 hours of crude powdered (aqueous) extracts of the botanical on Piscicola geometra was 1.10 ppm arithmetically and 1.14ppm logarithmically. The 95% confidence limits was 0.10ppm arithmetically and 0.12ppm logarithmically. The LC50 of ethanolic extract of the poison at 96-h was 0.5ppm arithmetically and 0.48ppm logarithmically. The 95% confidence limits were less than 0.10ppm. The use of extracts of R. vinifera in the control of leeches in fish ponds is discussed
Resumo:
Sub-lethal toxicity tests, such as the scope-for-growth test, reveal simple relationships between measures of contaminant concentration and effect on respiratory and feeding physiology. Simple models are presented to investigate the potential impact of different mechanisms of chronic sub-lethal toxicity on these physiological processes. Since environmental quality is variable, even in unimpacted environments, toxicants may have differentially greater impacts in poor compared to higher quality environments. The models illustrate the implications of different degrees and mechanisms of toxicity in response to variability in the quality of the feeding environment, and variability in standard metabolic rate. The models suggest that the relationships between measured degrees of toxic stress, and the maintenance ration required to maintain zero scope-for-growth, may be highly nonlinear. In addition it may be possible to define critical levels of sub-lethal toxic effect above which no environment is of sufficient quality to permit prolonged survival.
Resumo:
The effect of organotin compounds and copper, commonly used as antifouling agent, were studied on Mercenaria mercernaria larvae. They were reared under usual hatchery conditions until they reached 190 um in diameter. The larvae were subjected to four compounds, tributylin chloride (TBT), monobutyltin chloride (MBT), trimethyltin chloride (TMT), cupric sulfate (CuSo4) plus control. Mortality was measured at 24, 48 h, and 96h. Behavioral and/or metamorphic changes were recorded in triplicate at 24-48 and 96 h. The appearance in swimming larvae of a functional foot was considered a sign of competence to set and was recorded as a "pediveliger". Swimming larvae were considered as larvae that have not yet reached their total development and they were recorded as "swimming". Larvae that did not show foot or swimming activity and were static but alive on the bottom were recorded as "bottom". TBT was found to completely inhibit swimming activity at sublethal concentrations throughout the period of observation. Copper and MBT inhibited swimming from 48 h, TMT did not inhibit swimming activity at any of the times recorded. The four compounds ranked in order of decreasing toxicity were TBT>TMT>CU>MBT.
Resumo:
Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.
Resumo:
One of the chalkones synthesised in the author's laboratory was selected to determine its toxicity to fish, Lepidocephalicthys thermalis at different concentrations and time periods. Ascorbic acid contents were determined and it was found to be antitoxic.
Resumo:
Static bioassays were performed to observe the toxic effect of malathion to Barbodes gonionotus at 0.0 to 20.0 ppm concentrations. Malathion at 5.0 ppm was harmless to B. gonionotus and concentrations above 6.0 ppm were found to be lethal. Malathion at 2.06 ppm was safe for the B. gonionotus.
Resumo:
Hardness of water had significant effect on the acute toxicity of cadmium to common carp, Cyprinus carpio. The 96h LC sub(50) and safe application rate increased from 43.17 and 22.77 mg 1 super(-1) in soft water (0.9 mM Ca super(2+) l super(-1)) to 310.48 and 177.66 mg l super(-1), respectively, in very hard water (6.0 mM Ca super(2+) l super(-1)). In medium hard and hard water, 96h LC sub(50) values were 48.39 and 116.45 mg l super(-1). When sediments were included in the medium hard, hard and very hard water treatments, the 96h LC sub(50) were 111.20, 133.71 and 334.47 mg l super(-1), respectively. Among these values, the one for medium hard water with sediment treatment was significantly higher than medium hard water treatment; values for the other two treatments were non-significant when compared with respective water treatments. Sediment was able to reduce the acute toxicity of cadmium mainly due to the complexation of cadmium with dissolved organic carbon (DOC). At the lower hardness level, cadmium complexed with DOC and the acute toxicity was reduced significantly. At higher hardness, most of the DOC sites were occupied by calcium and the acute toxicity of cadmium was not significantly reduced in hard water with sediment and very hard water with sediment experiments in comparison to respective water treatments.
Resumo:
This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution.
Resumo:
P. monodon larvae were studied for the effects of temperature, ammonia, and nitrite on survival. Toxicity levels of nitrite were found to vary with larval stage. Larvae could tolerate ammonia up to about 10 ppm, with the effect more clearly shown by the zoea stage. Survival and growth were not significantly affected by temperature, although moulting was enhanced at temperatures higher than 29 C. Larvae of P. monodon have lower tolerance toward nitrite and ammonia compared to postlarvae. Although high survival was obtained at low levels of nitrite and ammonia, it is still necessary to know their effects on metabolism, in order to examine possible biochemical parameters for diagnosing sublethal toxicity or stress.