16 resultados para supernumerary segments
Resumo:
This report responds to the 1986 Beaches Bill which, in recognition of the potential deleterious impact on Florida's beaches of inlets modified for navigation, mandated a study of those inlets with identification of recommended action to reduce the impacts. This report addresses west Coast inlets; East Coast inlets are the subject of a companion report. There are 37 inlets along that portion of Florida's West Coast commencing from Pensacola Bay Entrance to Caxambas Pass at the south end of Marco Island. Compared to those on the East Coast, most West Coast inlets have not had the deleterious effects on the adjacent beaches, yet all modified inlets without proper management have the potential of impacting unfavorably on the adjacent shorelines. Moreover, at present there is interest in opening three West Coast entrances which either have been open in the past (Midnight Pass) or which have opened occasionally (Navarre Pass and Entrance to Phillips Lake). A review of inlets in their natural condition demonstrates the presence of a shallow broad outer bar across which the longshore transport Occurs. These shallow and shifting bar features were unsuitable for navigation which in many cases has led to the deepening of the channels and fixing with one or two jetty structures. Inlets in this modified state along with inappropriate maintenance practices have the potential of placing great ero$ional stress along the adjacent beaches. Moreover. channel dredging can reduce wave sheltering of the shoreline by ebb tidal shoals and alter the equilibrium of the affected shoreline segments. The ultimate in poor sand management practice is the placement of good quality beach sand in water depths too great for the sand to reenter the longshore system under natural forces; depths of 12 ft. or less are considered appropriate for Florida in order to maintain the sand in the system. With the interference of the nearshore sediment transport processes by inlets modified for navigation, if the adjacent beaches are to be stabilized there must be an active monitoring program with commitment to placement of dredged material of beach quality on shoreline segments of documented need. Several East Coast inlets have such transfer facilities; however. the quantities of sand transferred should be increased. Although an evolution and improvement in the technical capability to manage sand resources in the vicinity of inlets is expected, an adequate capability exists today and a concerted program should be made to commence a scheduled implementation of this capability at those entrances causing greatest erosional stress on the adjacent shorelines. A brief summary review for each of the 37 West Coast inlets is presented including: a scaled aerial photograph, brief historical information, several items related to sediment losses at each inlet and special characteristics relevant to State responsibilities. For each inlet, where appropriate, the above infor~tion is utilized to develop a recommenced action. (PDF has 101 pages.)
Resumo:
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)
Resumo:
In order to carry out the Multi-annual Guidance Programmes (MGP) the national fishing fleets of the EU were divided into mostly homogenous fleet segments. The current paper describes the single segments of thc German fishing fleet and summarizes their characteristics such as vessel capacity (tonnage in GRT), machine performance (power in kW) and vessel size (total length in m). Another table lists the averaged landings separated per stock and segment for the period from 1990 to 1994.
Resumo:
The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)
Resumo:
The population structure and abundance of the American lobster (Homarus americanus) stock in the Gulf of Maine are defined by data derived from a fishery-independent trawl survey program conducted by the National Marine Fisheries Service (NMFS). Few sampling stations in the survey area are located inshore, in particular along coastal Maine. According to statistics, however, more than two thirds of the lobster landings come from inshore waters within three miles off the coast of Maine. In order to include an inshore survey program, complementary to the NMFS survey, the Maine Department of Marine Resources (DMR) initialized an inshore survey program in 2000. The survey was modeled on the NMFS survey program, making these two survey programs comparable. Using data from both survey programs, we evaluated the population structure of the American lobster in the Gulf of Maine. Our findings indicate that lobsters in the Gulf of Maine tend to have a size-dependent inshore-off-shore distribution; smaller lobsters are more likely to stay inshore and larger lobsters are more likely to stay offshore. The DMR inshore and NMFS survey programs focused on different areas in the Gulf of Maine and likely targeted different segments of the stock. We suggest that data from both survey programs be used to assess the lobster stock and to describe the dynamics of the stock in the Gulf of Maine.
Resumo:
The morphometric and morphological characters of the rostrum have been widely used to identify penaeid shrimp species (Heales et al., 1985; Dall et al., 1990; Pendrey et al., 1999). In this setting, one of the constraints in studies of penaeid shrimp populations has been the uncertainty in the identification of early life history stages, especially in coastal nursery habitats, where recruits and juveniles dominate the population (Dall et al., 1990; Pérez-Castañeda and Defeo, 2001). In the western Atlantic Ocean, Pérez-Farfante (1969, 1970, 1971a) described diagnostic characters of the genus Farfantepenaeus that allowed identification of individuals in the range of 8−20 mm CL (carapace length) on the basis of the following morphological features: 1) changes in the structure of the petasma and thelycum; 2) absence or presence of distomarginal spines in the ventral costa of the petasma; 3) the ratio between the keel height and the sulcus width of the sixth abdominal somite; 4) the shape and position of the rostrum with respect to the segments and flagellum of the antennule; and 5) the ratio between rostrum length (RL) and carapace length (RL/CL). In addition, she classified Farfantepenaeus into two groups according to the shape and position of the rostrum with respect to the segments and flagellum of the antennule and the ratio RL/CL: 1) F. duorarum and F. notialis: short rostrum, straight distally, and the proximodorsal margin convex, usually extending anteriorly to the end of distal antennular segment, sometimes reaching to proximal one-fourth of broadened portion of lateral antennular flagellum, with RL/CL <0.75; and 2) F. aztecus, F. brasiliensis, F. paulensis, and F. subtilis: long rostrum, usually almost straight along the entire length, extending anteriorly beyond the distal antennular segment, sometimes reaching to the distal one-third of broadened portion of lateral antennular flagellum, with RL/CL >0.80. Pérez-Farfante stressed that, for the recognition to species level of juveniles <10 mm CL, all the characters listed above should be considered because occasionally one alone may not prove to be diagnostic. However, the only characters that could be distinguished for small juveniles in the range 4−8 mm CL are those defined on the rostrum. Therefore, it has been almost impossible to identify and separate small specimens of Farfantepenaeus (Pérez-Farfante, 1970, 1971a; Pérez-Farfante and Kensley, 1997).
Resumo:
This paper provides an overview of Hawaii's marine fisheries from 1948 to the present. After three decades of decline following a brief period of growth at the conclusion to World War lI, Hawaii's commercial fisheries began a decade of sustained development in the 1980's. At the same time, fisheries management issues became more significant as different segments of the fishery came into more direct competition. This paper provides new estimates of commercial landings for the 1977-90 period, and summarizes limited information on recreational and subsistence fisheries in the 1980's. It also provides some historical context which may be useful in evaluating fishery development and management options.
Resumo:
For purposes ofthe Endangered Species Act (ESA), a "species" is defined to include "any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. "Federal agencies charged with carrying out the provisions of the ESA have struggled for over a decade to develop a consistent approach for interpreting the term "distinct population segment." This paper outlines such an approach and explains in some detail how it can be applied to ESA evaluations of anadromous Pacific salmonids. The following definition is proposed: A population (or group of populations) will be considered "distinct" (and hence a "species ")for purposes of the ESA if it represents an evolutionarily significant unit (ESU) of the biological species. A population must satisfy two criteria to be considered an ESU: 1) It must be substantially reproductively isolated from other conspecific population units, and 2) It must represent an important component in the evolutionary legacy of the species. Isolation does not have to be absolute, but it must be strong enough to permit evolutionarily important differences to accrue in different population units. The second criterion would be met if the population contributes substantially to the ecological/genetic diversity of the species as a whole. Insights into the extent of reproductive isolation can be provided by movements of tagged fish, natural recolonization rates observed in other populations, measurements of genetic differences between populations, and evaluations of the efficacy of natural barriers. Each of these methods has its limitations. Identification of physical barriers to genetic exchange can help define the geographic extent of distinct populations, but reliance on physical features alone can be misleading in the absence of supporting biological information. Physical tags provide information about the movements of individual fish but not the genetic consequences of migration. Furthermore, measurements ofc urrent straying or recolonization rates provide no direct information about the magnitude or consistency of such rates in the past. In this respect, data from protein electrophoresis or DNA analyses can be very useful because they reflect levels of gene flow that have occurred over evolutionary time scales. The best strategy is to use all available lines of evidence for or against reproductive isolation, recognizing the limitations of each and taking advantage of the often complementary nature of the different types of information. If available evidence indicates significant reproductive isolation, the next step is to determine whether the population in question is of substantial ecological/genetic importance to the species as a whole. In other words, if the population became extinct, would this event represent a significant loss to the ecological/genetic diversity of thes pecies? In making this determination, the following questions are relevant: 1) Is the population genetically distinct from other conspecific populations? 2) Does the population occupy unusual or distinctive habitat? 3) Does the population show evidence of unusual or distinctive adaptation to its environment? Several types of information are useful in addressing these questions. Again, the strengths and limitations of each should be kept in mind in making the evaluation. Phenotypic/life-history traits such as size, fecundity, and age and time of spawning may reflect local adaptations of evolutionary importance, but interpretation of these traits is complicated by their sensitivity to environmental conditions. Data from protein electrophoresis or DNA analyses provide valuable insight into theprocessofgenetic differentiation among populations but little direct information regarding the extent of adaptive genetic differences. Habitat differences suggest the possibility for local adaptations but do not prove that such adaptations exist. The framework suggested here provides a focal point for accomplishing the majorgoal of the Act-to conserve the genetic diversity of species and the ecosystems they inhabit. At the same time, it allows discretion in the listing of populations by requiring that they represent units of real evolutionary significance to the species. Further, this framework provides a means of addressing several issues of particular concern for Pacific salmon, including anadromous/nonanadromous population segments, differences in run-timing, groups of populations, introduced populations, and the role of hatchery fish.
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
Our analyses of observer records reveal that abundance estimates are strongly influenced by the timing of longline operations in relation to dawn and dusk and soak time— the amount of time that baited hooks are available in the water. Catch data will underestimate the total mortality of several species because hooked animals are “lost at sea.” They fall off, are removed, or escape from the hook before the longline is retrieved. For example, longline segments with soak times of 20 hours were retrieved with fewer skipjack tuna and seabirds than segments with soak times of 5 hours. The mortality of some seabird species is up to 45% higher than previously estimated. The effects of soak time and timing vary considerably between species. Soak time and exposure to dusk periods have strong positive effects on the catch rates of many species. In particular, the catch rates of most shark and billfish species increase with soak time. At the end of longline retrieval, for example, expected catch rates for broadbill swordfish are four times those at the beginning of retrieval. Survival of the animal while it is hooked on the longline appears to be an important factor determining whether it is eventually brought on board the vessel. Catch rates of species that survive being hooked (e.g. blue shark) increase with soak time. In contrast, skipjack tuna and seabirds are usually dead at the time of retrieval. Their catch rates decline with time, perhaps because scavengers can easily remove hooked animals that are dead. The results of our study have important implications for fishery management and assessments that rely on longline catch data. A reduction in soak time since longlining commenced in the 1950s has introduced a systematic bias in estimates of mortality levels and abundance. The abundance of species like seabirds has been over-estimated in recent years. Simple modifications to procedures for data collection, such as recording the number of hooks retrieved without baits, would greatly improve mortality estimates.
Resumo:
We measured growth and movements of individually marked free-ranging juvenile white shrimp (Litopenaeus setiferus) in tidal creek subsystems of the Duplin River, Sapelo Island, Georgia. Over a period of two years, 15,974 juvenile shrimp (40−80 mm TL) were marked internally with uniquely coded microwire tags and released in the shallow upper reaches of four salt marsh tidal creeks. Subsequent samples were taken every 3−6 days from channel segments arranged at 200-m intervals along transects extending from the upper to lower reach of each tidal creek. These collections included 201,384 juvenile shrimp, of which 184 were marked recaptures. Recaptured shrimp were at large an average of 3−4 weeks (range: 2−99 days) and were recovered a mean distance of <0.4 km from where they were initially marked. Mean residence times in the creek subsystems ranged from 15.2 to 25.5 days and were estimated from exponential decay functions describing the proportions of marked individuals recaptured with increasing days at large. Residence time was not significantly correlated with creek length (Pearson=−0.316, P=0.684 ), but there was suggestive evidence of positive associations with either intertidal (Pearson r=0.867, P=0.133) or subtidal (Pearson r=0.946, P=0.054) drainage area. Daily mean specific growth rates averaged 0.009 to 0.013 among creeks; mean absolute growth rates ranged from 0.56−0.84 mm/d, and were lower than those previously reported for juvenile penaeids in estuaries of the southeastern United States. Mean individual growth rates were not significantly different between years (t-test, P>0.30) but varied significantly during the season, tending to be greater in July than November. Growth rates were size-dependent, and temporal changes in size distributions rather than temporal variation in physical environmental factors may have accounted for seasonal differences in growth. Growth rates differed between creeks in 1999 (t-test, P<0.015), but not in 1998 (t-test, P>0.5). We suggest that spatial variation in landscape structure associated with access to intertidal resources may have accounted for this apparent interannual difference in growth response.
Resumo:
Independent molecular markers based on mitochondrial and nuclear DNA were developed to provide positive identification of istiophorid and xiphiid billfishes (marlins, spearfishes, sailfish, and swordfish). Both classes of markers were based on amplification of short segments (<1.7 kb) of DNA by the polymerase chain reaction and subsequent digestion with informative restriction endonucleases. Candidate markers were evaluated for their ability to discriminate among the different species and the level of intraspecific variation they exhibited. The selected markers require no more than two restriction digestions to allow unambiguous identification, although it was not possible to distinguish between white marlin and striped marlin with any of the genetic characters screened in our study. Individuals collected from throughout each species’ range were surveyed with the selected markers demonstrating low levels of intraspecific character variation within species. The resulting keys provide two independent means for the forensic identification of fillets and for specific identification of early life history stages.
Resumo:
In the face of dramatic declines in groundfish populations and a lack of sufficient stock assessment information, a need has arisen for new methods of assessing groundfish populations. We describe the integration of seafloor transect data gathered by a manned submersible with high-resolution sonar imagery to produce a habitat-based stock assessment system for groundfish. The data sets used in this study were collected from Heceta Bank, Oregon, and were derived from 42 submersible dives (1988–90) and a multibeam sonar survey (1998). The submersible habitat survey investigated seafloor topography and groundfish abundance along 30-minute transects over six predetermined stations and found a statistical relationship between habitat variability and groundfish distribution and abundance. These transects were analyzed in a geographic information system (GIS) by using dynamic segmentation to display changes in habitat along the transects. We used the submersible data to extrapolate fish abundance within uniform habitat patches over broad areas of the bank by means of a habitat classification based on the sonar imagery. After applying a navigation correction to the submersible-based habitat segments, a good correlation with major boundaries on the backscatter and topographic boundaries on the imagery were apparent. Extrapolation of the extent of uniform habitats was made in the vicinity of the dive stations and a preliminary stock assessment of several species of demersal fish was calculated. Such a habitat-based approach will allow researchers to characterize marine communities over large areas of the seafloor.
Resumo:
Spatio-temporal variations in the physicochemical and biological parameters in the Morlaix estuary on the Brittany coast of France were studied. Hydrographically, the estuary can be classified into 3 segments: the upper estuary where stratification always persists, the lower estuary where vertical homogeneity is permanent, and a middle estuary where there is a regular oscillation of stratification and homogeneity during every tidal cycle, stratification being associated with slack waters and homogeneity, with ebb and flood. Nitrogen pollution in the estuary is very intense.