36 resultados para population model
Resumo:
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.
Resumo:
This assessment applies to cobia (Rachycentron canadum) located in the territorial waters of the U.S. Gulf of Mexico. Separation of the Gulf of Mexico and Atlantic Ocean is defined by the seaward extension of the Dade/Monroe county line in south Florida. Mixing of fish between the Atlantic and Gulf of Mexico occurs in the Florida Keys during winter months. Cobia annually migrate north in early spring in the Gulf to spawning grounds in the northern Gulf of Mexico, returning to the Florida Keys by winter. Catches of cobia in the Gulf of Mexico are dominated by recreational landings, accounting for nearly 90% of the total. Since 1980, the landings of cobia in the recreational fishery have remained fairly stable at around 400-600 mt with a slight peak of 1,014 mt in 1997. The recreational fishery was estimated to have landed 471 mt in 2000. The landings from the commercial fishery have shown a steady increase from 45 mt in 1980 to a peak of 120 mt in 1994, followed by a decline to 62 mt in 2000. The previous assessment of cobia occurred in 1996 using a virtual population analysis (VPA) model. For this analysis a surplus-production model (ASPIC) and a forward-projecting, age-structured population model programmed in the AD Model Builder (ADMB) software were applied to cobia data from the Gulf of Mexico. The primary data consisted of four catch-per-unit-effort (CPUE) indices derived from the Marine Recreational Fisheries Statistics Survey (MRFSS) (1981-1999), Southeast region headboat survey (1986-1999), Texas creel survey (1983-1999), and shrimp bycatch estimates (1980-1999). Length samples were available from the commercial (1983-2000) and recreational (1981-2000) fisheries. The ASPIC model applied to the cobia data provided unsatisfactory results. The ADMB model fit described the observed length composition data and fishery landings fairly well based on graphical examination of model residuals. The CPUE indices indicated some disagreement for various years, but the model fit an overall increasing trend from 1992-1997 for the MRFSS, headboat, and Texas creel indices. The shrimp bycatch CPUE was treated as a recruitment index in the model. The fit to these data followed an upward trend in recruitment from 1988-1997, but did not fit the 1994-1997 data points very well. This was likely the result of conflicting information from other data sources. Natural mortality (M) for cobia is unknown. As a result, a range of values for M from 0.2-0.4, based on longevity and growth parameters, were selected for use in the age-structured model. The choice of natural mortality appears to greatly influence the perceived status of the population. Population status as measured by spawning stock biomass in the last year relative to the value at maximum sustainable yield (SSB2000/SSBMSY), spawning stock biomass in the last year relative to virgin spawning stock biomass (SSB2000/S0), and static spawning stock biomass per recruit (SSBR) all indicate the population is either depleted, near MSY, or well above MSY depending on the choice of M. The variance estimates for these benchmarks are very large and in most cases ranges from depleted to very healthy status. The only statement that can be made with any degree of certainty about cobia in the Gulf of Mexico is that the population has increased since the 1980s. (PDF contains 61 pages)
Resumo:
The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.
Resumo:
Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.
Resumo:
Catch rates for both Nile perch (Lates niloticus) and dagaa (Rastrineobola argentea) from Kenyan waters of Lake Victoria have steadily increased through the 1980s, even though the fishing effort also increased during the same period. However, analysis of catch and effort data within and outside the Nyanza Gulf suggests an increase in catch rates due to a shift in effort from the inshore Gulf region to higher catch rates in the offshore region, rather than an increase in abundance. Analysis of catch rates by gear type both in and outside the Nyanza Gulf show that 1991 catch rates are lower than 1989 levels by 60-80% in some instances. Since the fishing power of these gears has increased during this period, it is likely that fish abundance declined more than catch rates. A dynamic population model is used to stimulate Nile perch dynamics. It indicates that a decline in catches should be anticipated.
Resumo:
The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and Central and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and possible control and management strategies for the lionfish invasion. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To describe the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish mature relatively early and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish are not readily consumed by serranids, even after extreme periods of starvation. Last, I used a stage-based, matrix population model to estimate the scale of control that would be needed to reduce an invading population of lionfish. Together, this research provides the first comprehensive assessment on lionfish biology and ecology and explains a number of life history and ecological interactions that have facilitated the unprecedented and rapid establishment of this invasive finfish. Future research is needed to understand the scale of impacts that lionfish could cause, especially in coral reef ecosystems, which are already heavily stressed. This research further demonstrates the need for lionfish control strategies and more rigorous prevention and early detection and rapid response programs for marine non-native introductions.
Resumo:
ENGLISH: Mathematical documentation of TUNP0P, an age-structured computer simulation model of the yellowfin tuna population and surface tuna fishery of the eastern Pacific Ocean, is described. Example runs of the model are presented and discussed, and the sensitivity of the model output to changes in various parameters is examined. SPANISH: Se describe la documentación matemática de TUNP0P, un modelo computador de simulación basado en la edad de la población del atún aleta amarilla y de la pesca atunera epipelágíca del Océano Pacífico oriental. Se presentan y se discuten ejemplos de las pasadas del modelo, y se examina la sensibilidad de los resultados de salida con relación a los cambios de varios parámetros. (PDF contains 47 pages.)
Resumo:
Table of Contents [pdf, 0.22 Mb] Executive Summary [pdf, 0.31 Mb] Report of the 2001 BASS/MODEL Workshop [pdf, 0.65 Mb] To review ecosystem models for the subarctic gyres Report of the 2001 MONITOR Workshop [pdf, 0.7 Mb] To review ecosystem models for the subarctic gyres Workshop presentations: Sonia D. Batten PICES Continuous Plankton Recorder pilot project Phillip R. Mundy GEM (Exxon Valdez Oil Spill Trustee Council`s "Gulf Ecosystem Monitoring" initiative) and U.S. GOOS plans in the North Pacific Ron McLaren and Brian O`Donnell A proposal for a North Pacific Action group of the international Data Buoy Cooperation Panel Gilberto Gaxiola-Castrol and Sila Najera-Martinez The Mexican oceanographic North Pacific program: IMECOCAL Sydney Levitus Building global ocean profile and plankton databases for scientific research Report of the 2001 REX Workshop [pdf, 1.73 Mb] On temporal variations in size-at-age for fish species in coastal areas around the Pacific Rim Workshop presentations: Brian J. Pyper, Randall M. Peterman, Michael F. Lapointe and Carl J. Walters [pdf, 0.33 Mb] Spatial patterns of covariation in size-at-age of British Columbia and Alaska sockeye salmon stocks and effects of abundance and ocean temperature R. Bruce MacFarlane, Steven Ralston, Chantell Royer and Elizabeth C. Norton [pdf, 0.4 Mb] Influences of the 1997-1998 El Niño and 1999 La Niña on juvenile Chinook salmon in the Gulf of the Farallones Olga S. Temnykh and Sergey L. Marchenko [pdf, 0.5 Mb] Variability of the pink salmon sizes in relation with abundance of Okhotsk Sea stocks Ludmila A. Chernoivanova, Alexander N. Vdoven and D.V. Antonenko [pdf, 0.3 Mb] The characteristic growth rate of herring in Peter the Great Bay (Japan/East Sea) Nikolay I. Naumenko [pdf, 0.5 Mb] Temporal variations in size-at-age of the western Bering Sea herring Evelyn D. Brown [pdf, 0.45 Mb] Effects of climate on Pacific herring, Clupea pallasii, in the northern Gulf of Alaska and Prince William Sound, Alaska Jake Schweigert, Fritz Funk, Ken Oda and Tom Moore [pdf, 0.6 Mb] Herring size-at-age variation in the North Pacific Ron W. Tanasichuk [pdf, 0.3 Mb] Implications of variation in euphausiid productivity for the growth, production and resilience of Pacific herring (Clupea pallasi) from the southwest coast of Vancouver Island Chikako Watanabe, Ahihiko Yatsu and Yoshiro Watanabe [pdf, 0.3 Mb] Changes in growth with fluctuation of chub mackerel abundance in the Pacific waters off central Japan from 1970 to 1997 Yoshiro Watanabe, Yoshiaki Hiyama, Chikako Watanabe and Shiro Takayana [pdf, 0.35 Mb] Inter-decadal fluctuations in length-at-age of Hokkaido-Sakhalin herring and Japanese sardine in the Sea of Japan Pavel A. Balykin and Alexander V. Buslov [pdf, 0.4 Mb] Long-term variability in length of walley pollock in the western Bering Sea and east Kamchtka Alexander A. Bonk [pdf, 0.4 Mb] Effect of population abundance increase on herring distribution in the western Bering Sea Sergey N. Tarasyuk [pdf, 0.4 Mb] Survival of yellowfin sole (Limanda aspera Pallas) in the northern part of the Tatar Strait (Sea of Japan) during the second half of the 20th century Report of the 2002 MODEL/REX Workshop [pdf, 1.2 Mb] To develop a marine ecosystem model of the North Pacific Ocean including pelagic fishes Summary and Overview [pdf, 0.4 Mb] Workshop presentations: Bernard A. Megrey, Kenny Rose, Francisco E. Werner, Robert A. Klumb and Douglas E. Hay [pdf, 0.47 Mb] A generalized fish bioenergetics/biomass model with an application to Pacific herring Robert A. Klumb [pdf, 0.34 Mb] Review of Clupeid biology with emphasis on energetics Douglas E. Hay [pdf, 0.47 Mb] Reflections of factors affecting size-at-age and strong year classes of herring in the North Pacific Shin-ichi Ito, Yutaka Kurita, Yoshioki Oozeki, Satoshi Suyama, Hiroya Sugisaki and Yongjin Tian [pdf, 0.34 Mb] Review for Pacific saury (Cololabis saira) study under the VENFISH project lexander V. Leonov and Gennady A. Kantakov [pdf, 0.34 Mb] Formalization of interactions between chemical and biological compartments in the mathematical model describing the transformation of nitrogen, phosphorus, silicon and carbon compounds Herring group report and model results [pdf, 0.34 Mb] Saury group report and model results [pdf, 0.46 Mb] Model experiments and hypotheses Recommendations [pdf, 0.4 Mb] Achievements and future steps Acknowledgements [pdf, 0.29 Mb] References [pdf, 0.32 Mb] Appendix 1. List of Participants [pdf, 0.32 Mb] Appendices 2-5. FORTRAN codes [pdf, 0.4 Mb] (Document pdf contains 182 pages)
Resumo:
Table of Contents [pdf, 0.11 Mb] Executive Summary [pdf, 0.07 Mb] MODEL Task Team Workshop Report Final Report of the International Workshop to Develop a Prototype Lower Trophic Level Ecosystem Model for Comparison of Different Marine Ecosystems in the North Pacific [pdf, 11.64 Mb] Report of the 1999 MONITOR Task Team Workshop [pdf, 0.32 Mb] Report of the 1999 REX Task Team Workshop Herring and Euphausiid population dynamics Douglas E. Hay and Bruce McCarter Spatial, temporal and life-stage variation in herring diets in British Columbia [pdf, 0.10 Mb] Augustus J. Paul and J. M. Paul Over winter changes in herring from Prince William Sound, Alaska [pdf, 0.08 Mb] N. G. Chupisheva Qualitative texture characteristic of herring (Clupea pallasi pallasi) pre-larvae developed from the natural and artificial spawning-grounds in Severnaya Bay (Peter the Great Bay) [pdf, 0.07 Mb] Gordon A. McFarlane, Richard J. Beamish and Jake SchweigertPacific herring: Common factors have opposite impacts in adjacent ecosystems [pdf, 0.15 Mb] Tokimasa Kobayashi, Keizou Yabuki, Masayoshi Sasaki and Jun-Ichi Kodama Long-term fluctuation of the catch of Pacific herring in Northern Japan [pdf, 0.39 Mb] Jacqueline M. O’Connell Holocene fish remains from Saanich Inlet, British Columbia, Canada [pdf, 0.40 Mb] Elsa R. Ivshina and Irina Y. Bragina On relationship between crustacean zooplankton (Euphausiidae and Copepods) and Sakhalin-Hokkaido herring (Tatar Strait, Sea of Japan) [pdf, 0.14 Mb] Stein Kaartvbeedt Fish predation on krill and krill antipredator behaviour [pdf, 0.08 Mb] Nikolai I. Naumenko Euphausiids and western Bering Sea herring feeding [pdf, 0.07 Mb] David M. Checkley, Jr. Interactions Between Fish and Euphausiids and Potential Relations to Climate and Recruitment [pdf, 0.08 Mb] Vladimir I. Radchenko and Elena P. Dulepova Shall we expect the Korf-Karaginsky herring migrations into the offshore western Bering Sea? [pdf, 0.75 Mb] Young Shil Kang Euphausiids in the Korean waters and its relationship with major fish resources [pdf, 0.29 Mb] William T. Peterson, Leah Feinberg and Julie Keister Ecological Zonation of euphausiids off central Oregon [pdf, 0.11 Mb] Scott M. Rumsey Environmentally forced variability in larval development and stage-structure: Implications for the recruitment of Euphausia pacifica (Hansen) in the Southern California Bight [pdf, 3.26 Mb] Scott M. Rumsey Inverse modelling of developmental parameters in Euphausia pacifica: The relative importance of spawning history and environmental forcing to larval stage-frequency distributions [pdf, 98.79 Mb] Michio J. Kishi, Hitoshi Motono & Kohji Asahi An ecosystem model with zooplankton vertical migration focused on Oyashio region [pdf, 33.32 Mb] PICES-GLOBEC Implementation Panel on Climate Change and Carrying Capacity Program Executive Committee and Task Team List [pdf, 0.05 Mb] (Document pdf contains 142 pages)
Resumo:
The status of the Gulf menhaden, Brevoortia patronus, fishery was assessed with purse-seine landings data from 1946 to 1997 and port sampling data from 1964 to 1997. These data were analyzed to determine growth rates, biological reference points for fi shing mortality from yield per recruit and maximum spawning potential analyses, spawner-recruit relationships, and maximum sustainable yield (MSY). The separable virtual population approach was used for the period 1976–97 (augmented by earlier analyses for 1964–75) to obtain point estimates of stock size, recruits to age 1, spawning stock size, and fishing mortality rates. Exploitation rates for age-1 fi sh ranged between 11% and 45%, for age-2 fi sh between 32% and 72%, and for age-3 fi sh between 32% and 76%. Biological reference points from yield per recruit (F0.1: 1.5–2.5/yr) and spawning potential ratio (F20: 1.3–1.9/yr and F30: 0.8–1.2/yr) were obtained for comparison with recent estimates of F (0.6–0.8/yr). Recent spawning stock estimates (as biomass or eggs) are above the long-term average, while recent recruits to age 1 are comparable to the long-term average. Parameters from Ricker-type spawner-recruit relations were estimated, although considerable unexplained variability remained. Recent survival to age-1 recruitment has generally been below that expected based on the Ricker spawner-recruit relation. Estimates of long-term MSY from PRODFIT and ASPIC estimation of production model ranged between 717,000 t and 753,000 t, respectively. Declines in landings between 1988 and 1992 raised concerns about the status of the Gulf menhaden stock. Landings have fl uctuated without trend since 1992, averaging about 571,000 t. However, Gulf menhaden are short lived and highly fecund. Thus, variation in recruitment to age 1, largely mediated by environmental conditions, infl uences fi shing success over the next two years (as age-1 and age-2 fi sh). Comparisons of recent estimates of fi shing mortality to biological reference points do not suggest overfishing. (PDF file contains 22 pages.)
Resumo:
The status of the gulf menhaden, Brevoortia patronus, fishery was assessed with purseseine landing data from 1946 to 1992 and port sampling data from 1964 to 1992. These data were analyzed to determine growth rates, biological reference points for fishing mortality from yield per recruit and maximum spawning potential analyses, spawner-recruit relationships, and maximum sustainable yield (MSY). Virtual population approaches were used to obtain point estimates of stock size, recruits to age I, spawning stock size, and fishing mortality rates. Exploitation rates ranged between 14% and 45% for age-1 fish, between 30% and 72% for age-2 fish, and between 36% and 71% for age-3 fish. Biological reference points from yield per recruit (FO. I: 0.7-0.9 yr-1) and maximum spawning potential (F20: 1.62.9 yr-l and F30: 1.0-2.1 yr-1) were obtained for comparison with recent estimates of F (0.4-0.8 yr-l). Parameters from Ricker-type spawner-recruit relations were estimated, although considerable unexplained variability remained. Estimates of long-term MSY from fits of the generalized production model ranged between 664,000 metric tons (t) and 897,000 t. Declines in landings since 1988 have raised concerns about the status of the gulf menhaden stock. However, gulf menhaden are short lived and highly fecund. Thus, variation in recruitment to age 1 largely mediated by environmental conditions influences fishing success over the next two years (as age-1 and age-2 fish). Comparisons of recent estimates of fishing mortality to biological reference points do not suggest overfishing. (PDF file contains 26 pages.)
Resumo:
ENGLISH: From morphometric data, tagging results and reaction of the stock to fishing, it is inferred that the yellowfin tuna of the Eastern Pacific form a distinct population which intermingles little, if at all, with populations to the westward. Excellent statistics of catch and effort, and records of total catch, available since 1934, during rapid growth of the fishery, have made possible application of a generalized mathematical predator-prey model to estimate the effect of fishing on the population, and the average abundance and yield corresponding to different amounts of fishing effort, and also to estimate the rate of fishing mortality per unit of effort. From serial samples of size composition of catches, and from tagging experiments, it has been possible to determine rates of growth and of total mortality. These kinds of information permit application of the catch-per-recruit model of Beverton and Holt. Combination of the results of application of the Beverton and Holt model and of the generalized predator-prey model, leads to inference of the relationship between stock size and recruitment. The form of the relationship is remarkably similar to the theoretical model developed by W. E. Ricker. These studies, based on the data of the near-surface fishery by baitboats and purse seiners, indicate clearly that the increased intensity of fishing has caused diminution of the stocks to the point where they are somewhat "overfished"-that is, incapable of supporting the maximum sustainable average harvest. SPANISH: De los datos morfométricos, de los resultados de las marcaciones y de la reacción del stock a la pesca, se infiere que el atún aleta amarilla del Pacífico oriental forma una población diferente que se mezcla poco, si es que llega a mezclarse, con las poblaciones del oeste. Las excelentes estadísticas de la captura y el esfuerzo y los registros de la pesca global disponibles desde 1934, durante el rápido crecimiento de la pesquería, han hecho posible la aplicación de un modelo matemático generalizado depredador-presa para estimar el efecto de la pesca en la población y el promedio de la abundancia y del rendimiento correspondientes a los diferentes valores del esfuerzo de pesca, y también para estimar la tasa de la mortalidad de pesca por unidad de esfuerzo. Gracias a las muestras en serie de la composición de tamaños de las capturas y a los experimentos de marcación, ha sido posible determinar las tasas del crecimiento y de la mortalidad total. Estos tipos de información permiten la aplicación del modelo de la captura-porrecluta de Beverton y Holt. La combinación de los resultados de la aplicación del modelo de Beverton y Holt y del modelo generalizado depredador-presa, conduce a la inferencia de la relación entre el tamaño del stock y el reclutamiento. La forma de la relación es notoriamente similar al modelo teórico desarrollado por W. E. Ricker. Estos estudios, basados en los datos de la pesquería cerca de la superficie efectuada por barcos de carnada y rederos, indican claramente que el aumento de la intensidad de la pesca ha causado la disminución de los stocks hasta el punto de dejarlos algo "superexplotados", o sea, incapacitados para mantener una producción máxima promedio. (PDF contains 50 pages.)
Resumo:
ENGLISH: Catches of skipjack tuna supporting major fisheries in parts of the western, central and eastern Pacific Ocean have increased in recent years; thus, it is important to examine the dynamics of the fishery to determine man's effect on the abundance of the stocks. A general linear hypothesis model was developed to standardize fishing effort to a single vessel size and gear type. Standardized effort was then used to compute an index of abundance which accounts for seasonal variability in the fishing area. The indices of abundance were highly variable from year to year in both the northern and southern areas of the fishery but indicated a generally higher abundance in the south. Data from 438 fish tagged and recovered in the eastern Pacific Ocean were used to compute growth curves. A least-squares technique was used to estimate the parameters of the von Bertalanffy growth function. Two estimates of the parameters were made by analyzing the same data in different ways. For the first set of estimates, K= 0.819 on an annual instantaneous basis and L= 729 mm; for the second, K = 0.431 and L=881. These compared well with estimates derived using the Chapman-Richards growth function, which includes the von Bertalanffy function as a special case. It was concluded that the latter function provided an adequate empirical fit to the skipjack data since the more complicated function did not significantly improve the fit. Tagging data from three cruises involving 8852 releases and 1777 returns were used to compute mortality rates during the time the fish were in the fishery. Two models were used in the analyses. The best estimates of the catchability coefficient (q) in the north and south were 8.4 X 10- 4 and 5.0 X 10- 5 respectively. The other loss rate (X), which included losses due to emigration, natural mortality and mortality due to carrying a tag, was 0.14 on an annual instantaneous basis for both areas. To detect the possible effect of fishing on abundance and total yield, the relation between abundance and effort and between total catch and effort was examined. It was found that at levels of intensity observed in the fishery, fishing does not appear to have had any measurable effect on the stocks. It was concluded therefore that the total catch could probably be increased by substantially increasing total effort beyond the present level, and that the fluctuations in abundance are fishery-independent. The estimates of growth, mortality and fishing effort were used to compute yield-per-recruitment isopleths for skipjack in both the northern and southern areas. For a size at first entry of about 425 mm, the yield per recruitment was calculated at 3 pounds in the north and 1.5 pounds in the south. In both areas it would be possible to increase the yield per recruitment by increasing fishing effort. It was not possible to assess potential production of the skipjack stocks fished in the eastern Pacific, except to note that the fishery had not affected their abundance and that they were certainly under-exploited. It was concluded that the northern and southern stocks could support increased harvests, especially the latter. SPANISH: Las capturas de atún barrilete que sostienen las pesquerías principales de la parte occidental, central y oriental del Océano Pacífico han aumentado en los últimos años; así que es importante examinar la dinámica de la pesquería para determinar el efecto que pueda tener sobre la abundancia de los stocks. Se desarrolló un modelo hipotético, lineal para standardizar el esfuerzo de pesca a un solo tamaño de barco y tipo de arte. Luego se usó el esfuerzo standardizado para computar un índice de la abundancia que pueda dar razón de la variabilidad estacional en el área de pesca. Los índices de la abundancia variaron mucho de un año a otro tanto en el área septentrional como en el área meridional de la pesquería, pero indicaron una abundancia generalmente superior en el sur. Se emplearon los datos de 438 peces marcados y recuperados en el Océano Pacífico oriental para computar las curvas de crecimiento. Una técnica de mínimos cuadrados fue usada para estimar los parámetros de la función de crecimiento de van Bertalanffy. Se hicieron dos estimativos de los parámetros mediante el análisis de los mismos datos, de diferente manera. Para el primer juego de estimativos, K=0.819 sobre una base anual instantánea y L∞=729 mm; para el segundo, K=0.431 y L∞=881. Estos se correlacionaron bien con los estimativos obtenidos usando la función de crecimiento de Chapman-Richards, que incluye la de von Bertalanffy como un caso especial. Se decidió que la última función proveía un ajuste empírico, adecuado a los datos del barrilete, ya que la función más complicada no mejoró significativamente el ajuste. Los datos de marcación de tres cruceros incluyendo 8852 liberaciones y 1777 retornos, fueron usados para computar las tasas de mortalidad durante el tiempo en que los peces estuvieron en la pesquería. Se usaron dos modelos en los análisis. Los mejores estimativos del coeficiente de capturabilidad (q) en el norte y en el sur fueron 8.4 X 10-4 y 5.0 X 10-5 , respectivamente. La otra tasa de pérdida (X), la cual incluyó pérdidas debidas a la emigración, mortalidad natural y mortalidad debida a llevar una marca, fue 0.14 sobre una base anual instantánea para las dos áreas. Con el fin de descubrir el efecto que posiblemente pueda tener la pesca sobre la abundancia y el rendimiento total, se examinó la relación entre la abundancia y el esfuerzo y entre la captura total y el esfuerzo. Se encontró que a los niveles de la intensidad observada en la pesquería, la pesca no parece haber tenido ningún efecto perceptible en los stocks. Por lo tanto se decidió que mediante un aumento substancial del esfuerzo total, más allá del nivel actual, la captura total probablemente podría aumentarse, y que las fluctuaciones de la abundancia son independientes de la pesquería. Los estimativos del crecimiento, mortalidad y esfuerzo de pesca fueron usados para computar las isopletas del rendimiento por recluta del barrilete, tanto en las áreas del norte como del sur. Para una talla de primera entrada de unos 425 mm, el rendimiento por recluta fue calculado en 3 libras en el norte y 1.5 libras en el sur. En ambas áreas sería posible aumentar el rendimiento por recluta mediante un aumento del esfuerzo de pesca. No fue posible determinar la producción potencial de los stocks del barrilete pescado en el Pacífico oriental, excepto para observar que la pesquería no ha afectado su abundancia y que ciertamente se encuentran subexplotados. Se concluyó que los stocks norte y sur pueden soportar un aumento en el rendimiento, especialmente este último. (PDF contains 274 pages.)