56 resultados para plant biomass
Resumo:
CA dense mat-forming population of Eurasian watermilfoil ( Myriophyllum spicatum L . ) was interfering with fishing and recreation in a small western Washington lake. A low concentration (1.5 mg/L active ingredient) of the herbicide endothall formulated as Aquathol® K was used in 2000 to attempt to selectively control the Eurasian watermilfoil. Aquatic plant biomass and frequency data were collected before treatment, ten weeks after treatment and during the growing season for 3 additional years. Macrophyte data were analyzed to assess the herbicide’s impacts on Eurasian watermilfoil as well as the rest of the aquatic plant community. Results showed a significant decrease in Eurasian watermilfoil biomass and frequency 10 weeks after treatment. The Eurasian watermilfoil continued to be present, but at a significantly reduced level through the remainder of the study (3 years after treatment). Of the native plant species, large-leaf pondweed ( Potamogeton amplifolius Tucker . ) frequency and biomass was significantly reduced after treatment. Common elodea ( Elodea canadensis Rich.), muskgrass ( Chara sp. Vallaint.) and bladderwort ( Utricularia sp. L.) all increased significantly after treatment. (PDF has 6 pages.)
Resumo:
A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.
Resumo:
The effects of the grass carp (Ctenopharyngodon idella Val.)on aquatic plant biomass, water quality, phytoplankton, chlorophyll a, zooplankton and benthic fauna were investigated between May and September 2000 in earthen ponds at Cifteler- Sakaryabasi Aquaculture and Research Station. (PDF has 8 pages)
Resumo:
Studies were conducted to evaluate whether the herbicide imazapyr or a combination of imazapyr and fluridone could be used effectively to control torpedograss ( Panicum repens L.), an exotic perennial plant that has replaced more than 6,000 ha of native vegetation and degraded quality wildlife habitat in Lake Okeechobee, Florida. Torpedograss was controlled for more than one year in some areas following a single aerial treatment using 0.56, 0.84, or 1.12 kg acid equivalents (ae) imazapyr/ha. Combining imazapyr and fluridone did not increase the level of torpedograss control. In areas where plant biomass was reduced by fire prior to being treated with 0.84 or 1.12 kg ae imazapyr/ha, torpedograss was controlled for more than two years and native plant species, including duck potato ( Sagittaria lancifolia L.) and pickerelweed ( Pontederia cordata L.) became the dominant vegetation in less than one year. Although torpedograss was controlled in some areas, little or no long-term control was observed at 16 of the 26 treatment locations. To reduce the uncertainty associated with predicting long-term treatment affects, additional studies are needed to determine whether environmental factors such as periphyton mats, plant thatch, hydroperiod and water depth affect treatment efficacy. , he
Resumo:
Highlights are given of a mangove community structure survey conducted in the coastal barangays of Carles, Panay Island, Philippines, in April 2003. The survey aimed to qualitatively describe the species composition, community structure and plant biomass of mangrove forests. The 13 sample sites showed a total of 18 mangrove species, dominated by Avicennia marina. The findings, which indicate a modest yet declining diversity of mangroves in Carles, reinforce the need for their protection and management. This is due not only to their importance as habitats for fish and shellfish juveniles that replenish stocks for capture fisheries and aquaculture, but also due to the fact that Carles is one of the few remaining areas in Panay where rare mangrove species can still be found.
Resumo:
Species selectivity of the aquatic herbicide dipotassium salt of endothall (Aquathol® K) was evaluated on plant species typically found in northern latitude aquatic plant communities. Submersed species included Eurasian watermilfoil (Myriophyllum spicatum L.), curlyleaf pondweed (Potamogeton crispus L.), Illinois pondweed (Potamogeton illinoensis Morong.), sago pondweed (Potamogeton pectinatus L.), coontail (Ceratophyllum demersum L.), elodea (Elodea canadensis Michx.) and wildcelery (Vallisneria americana L.). Emergent and floating-leaf plant species evaluated were cattail (Typha latifolia L.), smartweed (Polygonum hydropiperoides Michx.), pickerelweed (Pontederia cordata L.) and spatterdock (Nuphar advena Aiton). The submersed species evaluations were conducted in 7000 L mesocosm tanks, and treatment rates included 0, 0.5 1.0, 2.0, and 4.0 mg/L active ingredient (ai) endothall (dipotassium salt of endothall). The exposure period consisted of a 24-h flow through half-life for 7 d. The cattail and smartweed evaluation was conducted in 860 L mesocosm tanks, and the spatterdock and pickerelweed evaluations were conducted in 1600 L mesocosm tanks. Treatment rates for the emergent and floating-leafed plant evaluations included 0, 0.5, 2.0 and 4.0 mg/L ai endothall, and the exposure period consisted of removing and replacing half the water from each tank, after each 24 h period for a duration of 120 h. Biomass samples were collected at 3 and 8 weeks after treatment (WAT). Endothall effectively controlled Eurasian watermilfoil and curlyleaf pondweed at all of the application rates, and no significant regrowth was observed at 8 WAT. Sago pondweed, wildcelery, and Illinois pondweed biomass were also significantly reduced following the endothall application, but regrowth was observed at 8 WAT. Coontail and elodea showed no effects from endothall application at the 0.5, 1.0, and 2.0 mg/L application rates, but coontail was controlled at 4.0 mg/L rate. Spatterdock, pickerelweed, cattail, and smartweed were not injured at any of the endothall application rates.
Resumo:
Plant surface areas were measured from samples of two common submersed aquatics with widely diverging morphologies: Eurasian watermilfoil ( Myriophyllum spicatum L.) and water stargrass ( Heteranthera dubia (Jacq.) MacM.). Measures for the highly dissected leaves of Eurasian watermilfoil involved development of a regression equation relating leaf length to direct measures of a subsample of leaf parts. Measures for the simple leaves of the stargrass were sums of measured triangles. Stem surfaces for both species were calculated as measured cylinders. Though the means of the stem length and leaf length were larger for stargrass samples, their mean surface area was 95 cm 2 which was less than the 108 cm 2 recorded for Eurasian watermilfoil samples. Relating surface area to dry weight for the stargrass was straightforward, with 1 mg of dry weight yielding an average 0.678 cm 2 of surface area. Biomass measures for the water milfoil were confounded by the additional weight of epiphytic algae persisting on cleaned samples. The results suggest that a lesstime consuming method for surface area measures of plants with highly dissected leaves and a caveat for using biomass measures to estimate surface area in such plants.
Resumo:
Four southern Minnesota populations of curlyleaf pondweed ( Potamogeton crispus L.) were sampled monthly from January 2001 to November 2002 to determine seasonal phenological, biomass, and carbohydrate allocation patterns. Low periods of carbohydrate storage in the seasonal phenological cycle indicate potentially vulnerable periods in the plant’s life cycle and may be the ideal time to initiate management and control efforts.
Resumo:
One hundred and thirty-eight Melaleuca quinquenervia (Cav.) S. T. Blake (broad-leaved paperbark) trees were harvested from six sites in South Florida to formulate regression equations for estimating tree above-ground dry weight.
Resumo:
During the course of an eight year monitoring effort, the Wisconsin Department of Natural Resources documented a significant decline in milfoil biomass and distribution in Fish Lake, Wisconsin. Average milfoil biomass declined by 40- 50% from 374-524 g dw m -2 during 1991-93 to 265 g dw m -2 during both 1994 and 1995. Milfoil recovered fully in 1996- 98 to 446- 564 g dw m -2 . The size of the milfoil bed, as discerned from aerial photographs, shrank from a maximum coverage of 40 ha in 1991 to less than 20 ha during 1995. During the “crash” of 1994-95, milfoil plants exhibited typical signs of weevil-induced damage, including darkened, brittle, hollowed-out growing tips, and the arching and collapse of stems associated with loss of buoyancy. Monitoring of weevils and stem damage during 1995-98 showed highest densities and heaviest damage occurred near shore and subsequently fanned out into deeper water from core infestation sites each spring. The extent of milfoil stem damage was positively correlated with weevil densities (monthly sampling). However, weevil densities and stem damage were lower during 1995 (when milfoil biomass was in decline) than during 1996-98 (when milfoil biomass was fully recovered).
Resumo:
The biomass yields of duck week (Lemna minor(L) was monitored in hydroponic media prepared by variously extracting 0.50, 1.00 and 2.00g of dried chicken manure per liter of city water (tap water) supply. The culture media consisting of aqueous extract of the various manure treatments were made up to 12 liters in all cases with tap water as control. Plastic baths of 25 liters capacity with 0.71 super(m2) surface area were used as culture facility. Each bath was stocked at a density of 30g super(m-2) with fresh weed samples (i.e 21.30g/bath). Maximum yields were obtained at all treatment levels and control on day 3 and based on the highest yield of 0.37gm super(-2)d super(-1) (dry matter) obtained at 1.00gL manure treatment which was however not significantly higher (P>0.05) than the 0.36gm super(-2)d super(-1) (dry matter) at 0.05gl super(-1) media manure content, an average manure level of 0.75l super(-1) was selected and used to determine the operational plant density. Thus fresh weights of 30 to 300gm super(-2) was grown in triplicate at 30g intervals for a period of 3 days. A regression equation of Y=2.6720+0.0021x with a corresponding maximum density or operational plant density of 266gm super(-2) and yield of 0.98gm super(-2), d super(-1) (dry matter) were obtained. Further growth trials were carried out at the operational density and manure levels of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00gl super(-1) media manure concentration giving a significantly higher yield (P<0.05) of 17gm super(-2), d super(-1) (dry matter). This yield was however doubled to between 2.21 and 2.24gm super(-2) d super(-1) (equivalent to 7.96 to 8.06mt.ha-1, Yr-1 dry matter on extrapolation) if 25% and 75% respectively of the total weed cover were harvested daily within the experimental period. The role of some dissolved plant nutrients (DPN) were also discussed
Resumo:
Egeria densa (PLANCH.) ST. JOHN, a submerged plant invader, forms a wide submerged plant zone, particularly along the west coast of the south basin, Lake Biwa. The macrophyte occupies over 82% of the plant zone in the basin and its biomass reaches 93% of the total. The estimated annual net production was approximately 1 kg dry wt./m2 in a dense area, which is about 4.5 times as much as the net production by phytoplankton in an offshore area of the basin. Although the area covered by the macrophyte is only 5.8% of the total of the basin, it produced about one-tenth of the total annual primary production. In the most productive season Egeria produced 46% of the total primary productivity. Thus, the macrophyte never be neglected when one considers the energy flow or material circulation in the basin. This study was initiated in order to clarify the role of submerged macrophytes, particularly E. densa, in Lake Biwa. The following points are reported in this paper: the distribution of macrophytes in the south basin; seasonal change in standing crop of E. densa; seasonal change in values related to production, utilizing a model proposed by Ikushima with its parameters experimentally determined.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
The nature of aquatic plant communities often defines benthic habitat within oligotrophic and mesotrophic lakes and lake management increasingly recognizes the importance of maintaining plant diversity in order to sustain biological diversity and capacity within lakes. We have developed simple statistical relationships between key physical and vegetation variables that define the habitat requirements, or “habitat-templates”, of key vegetation types to facilitate management of plant communities in New Zealand lakes. Statistical relationships were derived from two datasets. The first was a multi-lake dataset to determine the effects of water level fluctuation and water clarity. The second dataset was from a comprehensive shoreline survey of Lake Wanaka, which allowed us to examine within-lake variables such as beach slope and wave action. Sufficient statistical relationships were established to develop a habitat template for each of the major species or assemblages. The relationships suggested that the extent and diversity of shallow-growing species was related to a combination of the extent of water level fluctuation and wave exposure. (PDF contains 9 pages.)
Resumo:
Evaluation of the potential for remote sensing to detect a relationship between wave action factors and plant re-establishment after a habitat enhancement at Lake Kissimmee, Florida. Using Geographic Information Systems (GIS) and remote sensing, wave action factors were found to be inversely related to the probability of plant re-establishment. However, correlation of wave action factors with areal coverage of aquatic plants based on field measurements, were unable to detect a significant relationship. Other factors aside from wave action, including littoral slope and the presence of offshore vegetation, may have influenced plant re-establishment in these sites. Remote sensing techniques may be useful to detect large changes in plants communities, however small changes in plant coverages may not be detectable using this technique.