66 resultados para periods of repeating thickness
Resumo:
Investigation were carried out on the effect of some locally available species in the enhancement of the organoleptic quality and the storage periods of smoked Heterotis niloticus using Pprosopis africana as common smoke sources. Samples of fresh H. niloticus were bought, cut into chunks while extract juice from pepper, ginger rhizomes, garlic, onion bulb were used as sources of spices. Samples of fish were divided randomly into five (5) batches dipped into spice extract juices for 10 minutes drained and smoked with common firewood. Treatment without spice extract juice served as control. Each batch of fish was smoked for 7 hours on a drum-made smoking kiln products were individually packaged in polythene bag stored at room temperature and used for sensory evaluation and microbial analysis. Results of the sensory evaluation indicated that there was significant difference (P<0.005) for taste, appearance, colour and overall acceptance for the treatments. Ginger juice extract had the best overall acceptance. Similarly there was significant difference (P>0.05) in the microbial analysis. The garlic juice extract had the longest storage period with minimum total plate and mould count after 8 weeks
Resumo:
Like other rivers in the Paris area, the Oise is subject to important seasonal algal blooms. This eutrophication generates notable problems for the production of drinking-water from a treatment plant on the river at Méry. A mathematical model has been developed to simulate variation in water quality in a pre-treatment storage basin, and another model is currently being adapted to model the River Oise. Integration of the two models should provide a comprehensive tool for predicting variations of phytoplankton and water-quality parameters associated with algal blooms. This will be a decision-aid for optimizing control of the treatment process for providing potable water.
Resumo:
The timing and duration of the reproductive cycle of Atka mackerel (Pleurogrammus monopterygius) was validated by using observations from time-lapse video and data from archival tags, and the start, peak, and end of spawning and hatching were determined from an incubation model with aged egg samples and empirical incubation times ranging from 44 days at a water temperature of 9.85°C to 100 days at 3.89°C. From June to July, males ceased diel vertical movements, aggregated in nesting colonies, and established territories. Spawning began in late July, ended in mid-October, and peaked in early September. The male egg-brooding period that followed continued from late November to mid-January and duration was highly dependent on embryonic development as affected by ambient water temperature. Males exhibited brooding behavior for protracted periods at water depths from 23 to 117 m where average daily water temperatures ranged from 4.0° to 6.2°C. Knowledge about the timing of the reproductive cycle provides a framework for conserving Atka mackerel populations and investigating the physical and biological processes influencing recruitment.
Resumo:
Southern bluefin tuna (SBT) (Thunnus maccoyii) growth rates are estimated from tag-return data associated with two time periods, the 1960s and 1980s. The traditional von Bertalanffy growth model (VBG) and a two-phase VBG model were fitted to the data by maximum likelihood. The traditional VBG model did not provide an adequate representation of growth in SBT, and the two-phase VBG yielded a significantly better fit. The results indicated that significant change occurs in the pattern of growth in relation to a VBG curve during the juvenile stages of the SBT life cycle, which may be related to the transition from a tightly schooling fish that spends substantial time in near and surface shore waters to one that is found primarily in more offshore and deeper waters. The results suggest that more complex growth models should be considered for other tunas and for other species that show a marked change in habitat use with age. The likelihood surface for the two-phase VBG model was found to be bimodal and some implications of this are investigated. Significant and substantial differences were found in the growth for fish spawned in the 1960s and in the 1980s, such that after age four there is a difference of about one year in the expected age of a fish of similar length which persists over the size range for which meaningful recapture data are available. This difference may be a density-dependent response as a consequence of the marked reduction in the SBT population. Given the key role that estimates of growth have in most stock assessments, the results indicate that there is a need both for the regular monitoring of growth rates and for provisions for changes in growth over time (possibly related to changes in abundance) in the stock assessment models used for SBT and other species.
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
A 90-day experiment was conducted to determine the effect of restricted ration and full feeding on the recovery growth and carcass compositions of fingerlings (average weight - 20.74 ± 0.13 g) of rohu, Labeo rohita (H.). Rohu fingerlings procured from a local fish breeder were fed with commercial pelleted feed (27% crude protein) during the two-week acclimatization in the laboratory condition. Experimental pelleted diet (30% crude protein) was prepared and the control group (T sub(CFR)) was fed at 3% of body weight for the 90-day trial period. The experimental group T sub(1FR) was fed for three days at 1% of body weight and the next three days at 3% of body weight, T sub(2FR) was fed for seven days at 1% of body weight and the next seven days at 3% of body weight, T sub(3FR) was fed for 15 days at l% of body weight and the 15 days at 3% of body weight and T sub(4FR) was fed for 25 days at 1% of body weight and the next 25 days at 3% of body weight, alternating between 1 and 3% for the specified period during the 90-day trial period. Daily rations were divided into two equal meals per day at 09.00 and 16.00 hours. Average percent survival rate of rohu during the 90-day trial period was more than 90. Percent live weight gain (98.90 ± 0.34, 113.0 ± 5.93, 125.71 ± 11.01 and 141.90 ± 2.89), specific growth rate (1.53 ± 0.01 1.68 ± 0.06, 1.80 ± 0.10 and 1.96 ± 0.02%/d) and absolute growth rate (1.33 ± 0.13, 1.38 ± 0.07, 1.39 ± 0.04 and 1.44 ± 0.07g/d) of the experimental groups (T sub(1FR), T sub(2FR), T sub(3FR) and T sub(4FR) respectively) increased with the advancement of the experiment in comparison to those in control, T sub(CFR) (90.92 ± 5.81%, 1.44 ± 0.07%/d and 1.34 ± 0.20g/d, respectively) and were proportionately correlated with the degree of deprivation probably through the mechanism of increased feed intake (hyperphagia), feed efficiency ratio or gross growth efficiency, protein efficiency ratio and the superior feed conversion ratio reflecting in better performance index. The body length and muscle composition of fish indicated that recovery growth happened due to protein growth but certainly not due to fat deposition in the gut. Feeding at 1 and 3% of body weight alternating over a period of 25 days might economize the culture operation of rohu.
Resumo:
The principal sources of surface-water supplies inBaker County are the St. Marys River and its tributaries. However, the flow of many of the small tributaries is intermittent, and without storage they are not dependable sources of supply during sustained periods of deficient rainfall. Of the six stream-gaging stations in Baker County for which complete records are available, one has been in operation for 31 years and provides a long-term record upon which to base correlative estimates for extending the short-term records at the other stations. All available streamflow data to 1957 have been summarized in graphic or tabular form. The hydrologic balance between minimum streamflows and increased evaporation losses afforded by potential shallow reservoirs provides design criteria for determining the maximum surface area of effective reservoir that can be created at a selected site within Baker County. This information has been presented in graphic and tabular form in the report. (PDF has 37 pages.)
Resumo:
The proportion of torpedograss tissue exposed to glyphosate at application rates of 0.28, 0.56, 1.12, 2.24, and 4.48 kg/ha affected control as measured by regrowth. The effect of tissue exposure was more pronounced as application rate decreased. This study suggests that higher rates of glyphosate need to be used during higher water levels, when less torpedograss tissue is exposed to herbicide spray and lower rates may be used during periods of low water levels. Addition of the water conditioning agent Quest (R) (0.25% v/v) to glyphosate spray mixtures diminished the influence of simulated rain events following glyphosate application. Twelve other adjuvants did not influence the effect of simulated rain events.
Resumo:
The Hawkesbury-Nepean River in New South Wales (NSW), Australia, is the largest river system in the Sydney metropolitan area, and it drains most of the developing areas to the west. This catchment is under increasing pressure from urban expansion and the river frequently experiences extended periods of low flows due to a combination of extensive river regulation and the Australian temperate climate. Added to this, the river and several of its tributaries receive treated sewage and stormwater from various sources. Habitats and biota within the Hawkesbury-Nepean River catchment have been altered since European settlement and many introduced species have spread throughout the terrestrial and aquatic environment (Recher et al. 1993). Submersed macrophyte assemblages within the river have undergone significant changes in their distribution and abundance due to eutrophication, habitat alteration and changes to river flows (Recher et al 1993). Anecdotal evidence and some early unpublished studies suggest that egeria (Egeria densa Planchon), introduced from South America as an aquarium plant, was present in the Hawkesbury-Nepean River prior to 1980. Sainty (1973) reported a persistent and troublesome infestation over a number of years at Wallacia in the upper Nepean River. Here, as part of a larger study on the ecology of macrophyte and invertebrate assemblages associated with anthropogenic disturbance in the Hawkesbury-Nepean River, we document the rapid spread of egeria since 1994. Significant increases in egeria biomass were also found, and we present preliminary evidence which suggest that the native ribbonweed, vallisneria (Vallisneria americana Michx.) is being displaced.
Resumo:
Didemnum sp. A is a colonial ascidian or “sea squirt” of unknown geographic origin. Colonies of Didemnum sp. A were first documented in U.S. waters in 1993 at Damariscotta River, Maine and San Francisco Bay, California. An alarming number of colonies have since been found at several locations in New England and along the West Coast of the contiguous continental United States. Originally believed to be restricted to artificial structures in nearshore habitats, such as ports and marinas, colonies of Didemnum sp. A have also been discovered on a gravel-pavement habitat on Georges Bank at depths of 40-65m. The wide distribution of Didemnum sp. A, the presence of colonies on an important offshore fishing ground, and the negative economic impacts that other species of noninidigenous ascidians have had on aquaculture operations have raised concerns about the potential impacts of Didemnum sp. A. We reviewed the available information on the biology and ecology of Didemnum sp. A and potentially closely related species to examine the environmental and socioeconomic factors that may have influenced the introduction, establishment and spread of Didemnum sp. A in U.S. waters, the potential impacts of this colonial ascidian on other organisms, aquaculture, and marine fisheries, and the possibility that it will spread to other U.S. waters. In addition, we present and discuss potential management objectives for minimizing the impacts and spread of Didemnum sp. A. Concern over the potential for Didemnum sp. A to become invasive stems from ecological traits that it shares with other invasive species, including the ability to overgrow benthic organisms, high reproductive and population growth rates, ability to spread by colony fragmentation, tolerance to a wide range of environmental conditions, apparent scarcity of predators, and the ability to survive in human dominated habitats. At relatively small spatial scales, species of Didemnum and other nonindigenous ascidians have been shown to alter the abundance and composition of benthic assemblages. In addition, the Canadian aquaculture industry has reported that heavy infestations of nonindigenous ascidians result in increased handling and processing costs. Offshore fisheries may also suffer where high densities of Didemnum sp. A may alter the access of commercially important fish species to critical spawning grounds, prey items, and refugia. Because colonial ascidian larvae remain viable for only 12–24hrs, the introduction and spread of Didemnum sp. A across large distances is thought to be predominantly human mediated; hull fouling, aquaculture, and ballast water. Recent studies suggest that colony growth rates decline when temperatures exceed 21 ºC for 7 consecutive days. Similarly, water temperatures above 8 to 10 ºC are necessary for colony growth; however, colonies can survive extended periods of time below this temperature threshold as an unidentified overwintering form. A qualitative analysis of monthly mean nearshore water temperatures suggest that new colonies of Didemnum will continue to be found in the Northeast U.S., California Current, and Gulf of Alaska LMEs. In contrast, water temperatures become less favorable for colony establishment in subarctic, subtropical, and tropical areas to the north and south of Didemnum’s current distribution in cool temperate habitats. We recommend that the Aquatic Nuisance Species Task Force serve as the central management authority to coordinate State and Federal management activities. Five objectives for a Didemnum sp. A management and control program focusing on preventing the spread of Didemnum sp. A to new areas and limiting the impacts of existing populations are discussed. Given the difficulty of eradicating large populations of Didemnum sp. A, developing strategies for limiting the access of Didemnum sp. A to transport vectors and locating newly established colonies are emphasized. (PDF contains 70 pages)
Resumo:
An investigation was conducted into the deaths of more than 220 bottlenose dolphins (Tursiops truncatus) that occurred within the coastal bay ecosystem of mid-Texas between January and May 1992. The high mortality rate was unusual in that it was limited to a relatively small geographical area, occurred primarily within an inshore bay system separated from the Gulf of Mexico by barrier islands, and coincided with deaths of other taxa including birds and fish. Factors examined to determine the potential causes of the dolphin mortalities included microbial pathogens, natural biotoxins, industrial pollutants, other environmental contaminants, and direct human interactions. Emphasis was placed on nonpoint source pesticide runoff from agricultural areas, which had resulted from record rainfall that occurred during the period of increased mortality. Analytical results from sediment, water, and biota indicated that biotoxins, trace metals, and industrial chemical contamination were not likely causative factors in this mortality event. Elevated concentrations of pesticides (atrazine and aldicarb) were detected in surface water samples from bays within the region, and bay salinities were reduced to <10 ppt from December 1991 through April 1992 due to record rainfall and freshwater runoff exceeding any levels since 1939. Prolonged exposure to low salinity could have played a significant role in the unusual mortalities because low salinity exposure may cause disruption of the permeability barrier in dolphin skin. The lack of established toxicity data for marine mammals, particularly dermal absorption and bioaccumulation, precludes accurate toxicological interpretation of results beyond a simple comparison to terrestrial mammalian models. Results clearly indicated that significant periods of agricultural runoff and accompanying low salinities co-occurred with the unusual mortality event in Texas, but no definitive cause of the mortalities was determined. (PDF file contains 25 pages.)
Resumo:
ENGLISH: The rate of growth of tropical tunas has been studied by various investigators using diverse methods. Hayashi (1957) examined methods to determine the age of tunas by interpreting growth patterns on the bony or hard parts, but the results proved unreliable. Moore (1951), Hennemuth (1961), and Davidoff (1963) studied the age and growth of yellowfin tuna by the analysis of size frequency distributions. Schaefer, Chatwin and Broadhead (1961), and Fink (ms.), estimated the rate of growth of yellowfin tuna from tagging data; their estimates gave a somewhat slower rate of growth than that obtained by the study of length-frequency distributions. For the yellowfin tuna, modal groups representing age groups can be identified and followed for relatively long periods of time in length-frequency graphs. This may not be possible, however, for other tropical tunas where the modal groups may not represent identifiable age groups; this appears to be the case for skipjack tuna (Schaefer, 1962). It is necessary, therefore, to devise a method of estimating the growth rates of such species without identifying the year classes. The technique described in this study, hereafter called the "increment technique", employs the measurement of the change in length per unit of time, with respect to mean body length, without the identification of year classes. This technique is applied here as a method of estimating the growth rate of yellowfin tuna from the entire Eastern Tropical Pacific, and from the Commission's northern statistical areas (Areas 01-04 and 08) as shown in Figure 1. The growth rates of yellowfin tuna from Area 02 (Hennemuth, 1961) and from the northern areas (Davidoff, 1963) have been described by the technique of tracing modal progressions of year classes, hereafter termed the "year class technique". The growth rate analyses performed by both techniques apply to the segment of the population which is captured by tuna fishing vessels. The results obtained by both methods are compared in this report. SPANISH: La tasa del crecimiento de los atunes tropicales ha sido estudiada por varios investigadores quienes usaron diversos métodos. Hayashi (1957) examinó los métodos para determinar la edad de los atunes interpretando las marcas del crecimiento de las partes óseas o duras, pero los resultados no han demostrado eficacia. Moore (1951), Hennemuth (1961) y Davidoff (1963) estudiaron la edad y el crecimiento del atún aleta amarilla por medio del análisis de las distribuciones de la frecuencia de tamaños. Schaefer, Chatwin y Broadhead (1961) y Fink (Ms.), estimaron la tasa del crecimiento del atún aleta amarilla valiéndose de los datos de la marcación de los peces; ambos estimaron una tasa del crecimiento algo más lenta que la que se obtiene mediante el estudio de las distribuciones de la frecuencia de longitudes. Para el atún aleta amarilla, los grupos modales que representan grupos de edad pueden ser identificados y seguidos durante períodos de tiempo relativamente largos en los gráficos de la frecuencia de longitudes. Sin embargo, ésto puede no ser posible para otros atunes tropicales para los cuales los grupos modales posiblemente no representan grupos de edad identificables; este parece ser el caso para el barrilete (Schaefer, 1962). Consecuentemente, es necesario idear un método para estimar las tasas del crecimiento de las mencionadas especies sin necesidad de identificar las clases anuales. La técnica descrita en este estudio, en adelante llamada la "técnica incremental", emplea la medida del cambio en la longitud por unidad de tiempo, con respecto al promedio de la longitud corporal, sin tener que identificar las clases anuales. Esta técnica se aplica aquí como un método para estimar la tasa del crecimiento del atún aleta amarilla de todo el Pacífico Oriental Tropical, y de las áreas estadísticas norteñas de la Comisión (Areas 01-04 y 08), como se muestra en la Figura 1. Las tasas del crecimiento del atún aleta amarilla del Area 02 (Hennemuth, 1961) y de las áreas del norte (Davidoff, 1963), han sido descritas por medio de una técnica que consiste en delinear las progresiones modales de las clases anuales, en adelante llamada la "técnica de la clase anual". Los análisis de la tasa del crecimiento llevados a cabo por ambas técnicas se refieren al segmento de la población capturada por embarcaciones pesqueras de atún. Los resultados obtenidos por ambos métodos se comparan en este informe.
Resumo:
Between 1990 and 1995, Pacific coastal bottlenose dolphins (Tursiops truncatus gillii) were studied using photo-identification during 228 boat-based surveys of the coastal strip (<1 km offshore) between Marina and New Brighton Beach in Monterey Bay (18 km of coastline). The study period encompassed 3 regular (1990, 1991 and 1995) and 3 El Niño years (1992, 1993, 1994). Based on dorsal fin markings, 97 unique individuals were identified. Eighteen animals (19%) showed a high level of site fidelity (defined as presence in at least 5 of the 6 years), although their overall range was larger than the study area. Thirty-eight animals (39%) were transient, leaving for periods of time, and 41 (42%) were occasional encounters. The rate of discovery indicated a pulsed recruitment of new individuals into the study area, with periods of stable school composition, especially during non-El Nino years, and periods of high school fluidity. Encounter rate was significantly higher in El Niño (81%) than non-El Niño years (61%). School size averaged 16 individuals (C.I.3, =0.05) and was significantly larger in El Niño years. Schools where calves were present were twice as large (mean=15; S.D.=8) than schools without calves (mean=8; S.D.=6). Newborns represented 12% of the sightings and were seen year round with a peak in summer and fall. Crude birth rate ranged between 0.09 and 0.17 (mean=0.13; S.D.=0.03). Five females calved in consecutive years and a resident female calved once a year for the duration of the study, possibly indicating a high rate of mortality for calves in this area. Individuals often traveled as subgroups of more consistent composition than the school itself, possibly indicating that a stronger social bond exists within these units which may function as “bands” (sensu Wells 1991) of same sex individuals traveling within a larger school of mixed composition. (ppt file of poster)
Resumo:
Village tanks are put to a wide range of uses by the rural communities that depend on them for their survival. As the primacy of irrigation has decreased under these tanks due to a variety of climatic and economic reasons there is a need to reevaluate their use for other productive functions. The research presented in this paper is part of a programme investigating the potential to improve the management of living aquatic resources in order to bring benefits to the most marginal groups identified in upper watershed areas. Based on an improved typology of seasonal tanks, the seasonal changes and dynamics of various water quality parameters indicative of nutrient status and fisheries carrying capacity are compared over a period of one year. Indicators of Net (Primary) Productivity (NP): Rates of Dissolved Oxygen (DO) change, Total Suspended Solids (TSS): Total Suspended Volatile solids (TVSS) ratios are the parameters of principle interest. Based on these results a comparative analysis is made on two classes of ‘seasonal’ and ‘semi-seasonal’ tanks. Results indicate a broad correlation in each of these parameters with seasonal trends in tank hydrology. Highest productivity levels are associated with periods of declining water storage, whilst the lowest levels are associated with the periods of maximum water storage shortly after the NW monsoon. This variation is primarily attributed to dilution effects associated with depth and storage area. During the yala period, encroachment of the surface layer by several species of aquatic macrophyte also has progressively negative impacts on productivity. The most seasonal tanks show wider extremes in seasonal nutrient dynamics, overall, with less favourable conditions than the ‘semi-seasonal’ tanks. Never the less all the tanks can be considered as being highly productive with NP levels comparable to fertilised pond systems for much of the year. This indicates that nutrient status is not likely to be amongst the most important constraints to enhancing fish production. Other potential management improvements based on these results are discussed. [PDF contains 19 pages]
Resumo:
Shortnose sturgeon (Acipenser brevirostrum), an endangered species, has experienced a several-fold increase in abundance in the Hudson River in recent decades. This population growth followed a substantial improvement in water quality during the 1970s to a large portion (c. 40%) of the species' summertime nursery area. Age structure and growth were investigated to evaluate the hypothesis that improvements in water quality stimulated population recovery through increased survival of young of the year juveniles. Specimens were captured using gill nets bi-monthly from November 2003 to November 2004 (n = 596). Annuli in fin spine sections were used to generate estimates of sturgeon age. Based upon a marginal increment analysis, annuli were determined to form at an annual rate. Age determinations yielded a catch composed of age 5-30 years for sizes 49-105cm Total Length (n = 554). Individual growth rate (von Bertalanffy coefficients: TL, = 1045mm, K = 0.07) for the population was similar to previous growth estimates within the Hudson River as well as proximal estuaries. Hindcast year-class strengths, based upon a recent stock assessment (Bain et al. 2000) and corrected for gill net mesh selectivity and cumulative mortality indicated high recruitments (28,000-43,000 yearlings)during 1986-1992, which were preceded and succeeded by c.5-year periods of lower recruitment (5,000-1 5,000 yearlings). Recruitment patterns were corroborated by trends in shortnose sturgeon bycatch from a Hudson utilities-sponsored monitoring program. Results indicated that Hudson River shortnose sturgeon abundance increased due to the formation of several strong year-classes occurring about five years subsequent to improved water quality in important nursery and forage habitats in the upper Hudson River estuary. (PDF contains 108 pages.)