119 resultados para eastern Asian-eastern North America disjunct distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eastern Steller sea lion (Eumetopias jubatus) population comprises animals that breed along the west coast of North America between California and southeastern Alaska. There are currently 13 major rookeries (>50 pups): five in southeastern Alaska, three in British Columbia, two in Oregon, and three in California. Overall abundance has increased at an average annual rate of 3.1% since the 1970s. These increases can largely be attributed to population recovery from predator-control kills and commercial harvests, and abundance is now probably as high as it has been in the last century. The number of rookeries has remained fairly constant (n=11 to 13) over the past 80 years, but there has been a northward shift in distribution of both rookeries and numbers of animals. Based on the number of pups counted in a population-wide survey in 2002, total pup production was estimated to be about 11,000 (82% in southeastern Alaska and British Columbia), representing a total population size as approximately 46,000−58,000 animal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an identification guide for cetaceans (whales, dolphins, and porpoises), that was designed to assist laymen in identifying cetaceans encountered in eastern North Pacific and Arctic waters. It was intended for use by ongoing cetacean observer programs. This is a revision of an earlier guide with the same title published in 1972 by the Naval Undersa Center and the National Marine Fisheries Service. It includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices include illustrations of tags on whales, dolphins, and porpoises, by Larry Hobbs; how to record data from observed cetaceans at sea and for stranded cetaceans; and a list of cetacean names in Japanese and Russian. (Document contains 245 pages - file takes considerable time to open)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how well National Marine Sanctuaries and other marine protected areas represent the diversity of species present within and among the biogeographic regions where they occur is essential for assessing their conservation value and identifying gaps in the protection of biological diversity. One of the first steps in any such assessment should be the development of clearly defined and scientifically justified planning boundaries representing distinct oceanographic conditions and faunal assemblages. Here, we propose a set of boundaries for the continental shelf of northeastern North America defined by subdivisions of the Eastern Temperate Province, based on a review and synthesis (i.e. meta-analysis) of the scientific literature. According to this review, the Eastern Temperate Province is generally divided into the Acadian and Virginian Subprovinces. Broad agreement places the Scotian Shelf, Gulf of Maine, and Bay of Fundy within the Acadian Subprovince. The proper association of Georges Bank is less clear; some investigators consider it part of the Acadian and others part of the Virginian. Disparate perspectives emerge from the analysis of different groups of organisms. Further, while some studies suggest a distinction between the Southern New England shelf and the rest of the Mid-Atlantic Bight, others describe the region as a broad transition zone with no unique characteristics of its own. We suggest there exists sufficient evidence to consider the Scotian Shelf, Gulf of Maine, Georges Bank, Southern New England, and Southern Mid-Atlantic Bight as distinct biogeographic regions from a conservation planning perspective, and present a set of proposed mapped boundaries. (PDF contains 23 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Otoliths commonly are used to determine the taxon, age, and size of fishes. This information is useful for population management, predator-prey studies, and archaeological research. The relationship between the length of a fish and the length of its otoliths remains unknown for many species of marine fishes in the Pacific Ocean. Therefore, the relationships between fish length and fish weight, and between otolith length and fish length, were developed for 63 species of fishes caught in the eastern North Pacific Ocean. We also summarized similar relationships for 46 eastern North Pacific fish species reported in the literature. The relationship between fish length and otolith length was linear, and most of the variability was explained by a simple least-squares regression (r 2 > 0.700 for 45 of 63 species). The relationship between otolith length and fish length was not significantly different between left and right otoliths for all but one fish species. Images of otoliths from 77 taxa are included to assist in the identification of species. (PDF file contains 38 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covers the history of the study of boring sponges, taxonomy and distributions. Also includes identification of species, descriptions, key, references and plates. (PDF contains 30 pages)