387 resultados para coastal erosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite an increasing literary focus on climate change adaptation, the facilitation of this adaptation is occurring on a limited basis (Adger et al. 2007) .This limited basis is not necessarily due to inability; rather, a lack of comprehensive cost estimates of all options specifically hinders adaptation in vulnerable communities (Adger et al. 2007). Specifically the estimated cost of the climate change impact of sea-level rise is continually increasing due to both increasing rates and the resulting multiplicative impact of coastal erosion (Karl et al., 2009, Zhang et al., 2004) Based on the 2007 Intergovernmental Panel on Climate Change report, minority groups and small island nations have been identified within these vulnerable communities. Therefore the development of adaptation policies requires the engagement of these communities. State examples of sea-level rise adaptation through land use planning mechanisms such as land acquisition programs (New Jersey) and the establishment of rolling easements (Texas) are evidence that although obscured, adaptation opportunities are being acted upon (Easterling et al., 2004, Adger et al.2007). (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Approximately two-thirds of coastal and Great Lakes states have some type of shoreline construction setback or construction control line requiring development to be a certain distance from the shoreline or other coastal feature (OCRM, 2008). Nineteen of 30 coastal states currently use erosion rates for new construction close to the shoreline. Seven states established setback distances based on expected years from the shoreline: the remainder specify a fixed setback distance (Heinz Report, 2000). Following public hearings by the County of Kauai Planning Commission and Kauai County Council, the ‘Shoreline Setback and Coastal Protection Ordinance’ was signed by the Mayor of Kauai on January 25, 2008. After a year of experience implementing this progressive, balanced shoreline setback ordinance several amendments were recently incorporated into the Ordinance (#887; Bill #2319 Draft 3). The Kauai Planning Department is presently drafting several more amendments to improve the effectiveness of the Ordinance. The intent of shoreline setbacks is to establish a buffer zone to protect shorefront development from loss due to coastal erosion - for a period of time; to provide protection from storm waves; to allow the natural dynamic cycles of erosion and accretion of beaches and dunes to occur; to maintain beach and dune habitat; and, to maintain lateral beach access and open space for the enjoyment of the natural shoreline environment. In addition, a primary goal of the Kauai setback ordinance is to avoid armoring or hardening of the shore which along eroding coasts has been documented to ultimately eliminate the fronting beach. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This report is an account of a cross-country study that covered Vietnam, Indonesia and the Philippines. Covering four sites (one each in Indonesia and Vietnam) and two sites in the Philippines, the study documented the impacts of three climate hazards affecting coastal communities, namely typhoon/flooding, coastal erosion and saltwater intrusion. It also analyzed planned adaptation options, which communities and local governments can implement, as well as autonomous responses of households to protect and insure themselves from these hazards. It employed a variety of techniques, ranging from participatory based approaches such as community hazard mapping and Focus Group Discussions (FGDs) to regression techniques, to analyze the impact of climate change and the behavior of affected communities and households.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate change with its attendant geophysical hazards is well studied. A great deal of attention has gone into analyzing climate change impacts as well as searching out possible mitigating adaptive strategies. These matters are very real concerns, especially for coastal communities. Such communities are often the most vulnerable to climate change, since their citizens frequently live in abject poverty and have limited capacity to adapt to geophysical hazards. Their situation is further complicated by the prospect of dealing with a confluence of hazards in comparison with those in other ecosystems. Against this backdrop Worldfish and the Economy and Environment Program for Southeast Asia (EEPSEA) collaborated to implement the cross-country study “Climate Change Impacts, Vulnerability Assessments, Economic and Policy Analysis of Adaptation Strategies in Selected Coastal Areas in Indonesia, Philippines, and Vietnam”. As its title suggests the study covered selected sites in Vietnam, Indonesia and the Philippines. Employing a gamut of interdisciplinary methodologies -- ranging from community-based approaches such as community hazard mapping and focus group discussions (FGDs) to regression techniques -- the study documented the impacts from three climate hazards affecting coastal communities. These were typhoon/flooding, coastal erosion, and saltwater intrusion. The team also analyzed planned adaptation options suited to implementation by communities and local governments, augmenting autonomous responses of households to protect and insure themselves from these hazards.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: For over three decades, scientists have been documenting the decline of coral reef ecosystems, amid increasing recognition of their value in supporting high biological diversity and their many benefits to human society. Coral reef ecosystems are recognized for their benefits on many levels, such as supporting economies by nurturing fisheries and providing for recreational and tourism opportunities, providing substances useful for medical purposes, performing essential ecosystem services that protect against coastal erosion, and provid-ing a diversity of other, more intangible contributions to many cultures. In the past decade, the increased awareness regarding coral reefs has prompted action by governmental and non-governmental organizations, including increased funding from the U.S. Congress for conservation of these important ecosystems and creation of the U.S. Coral Reef Task Force (USCRTF) to coordinate activities and implement conservation measures [Presidential Executive Order 13089]. Numerous partnerships forged among Federal agencies and state, local, non-governmental, academic and private partners support activities that range from basic science to systematic monitoring of ecosystem com-ponents and are conducted by government agencies, non-governmental organizations, universities, and the private sector. This report shares the results of many of these efforts in the framework of a broad assessment of the condition of coral reef ecosystems across 14 U.S. jurisdictions and Pacific Freely Associated States. This report relies heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data, where possible. The success of this effort can be attributed to the dedication of over 160 report contributors who comprised the expert writing teams for each jurisdiction. The content of the report chapters are the result of their considerable collaborative efforts. The writing teams, which were organized by jurisdiction and comprised of experts from numerous research and management institutions, were provided a basic chapter outline and a length limit, but the content of each chapter was left entirely to their discretion. Each jurisdictional chapter in the report is structured to: 1) describe how each of the primary threats identified in the National Coral Reef Action Strategy (NCRAS) has manifested in the jurisdiction; 2) introduce ongoing monitoring and assessment activities relative to three major categories of inquiry – water quality, benthic habitats, and associated biological communities – and provide summary results in a data-rich format; and 3) highlight recent management activities that promote conservation of coral reef ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soft engineering solutions are the current standard for addressing coastal erosion in the US. In South Carolina, beach nourishment from offshore sand deposits and navigation channels has mostly replaced construction of seawalls and groins, which were common occurrences in earlier decades. Soft engineering solutions typically provide a more natural product than hard solutions, and also eliminate negative impacts to adjacent areas which are often associated with hard solutions. A soft engineering solution which may be underutilized in certain areas is shoal manipulation. (PDF contains 4 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change is amongst the most dreaded problems of the new millennium. Bangladesh is a coastal country bounded by Bay of Bengal on its southern part and here natural disasters are an ongoing part of human life. This paper discusses about the possible impact of climate change through tropical cyclones, storm surges, coastal erosion and sea level rise in the coastal community of Bangladesh and how they cope with these extreme events by the help of mangrove ecosystem. Both qualitative and quantitative discussions are made by collected data from different research work those are conducted in Bangladesh. Mangrove ecosystem provides both goods and services for coastal community, helps to improve livelihood options and protect them from natural disaster by providing variety of environmental support

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The article presents the impact of mangrove conversion on fisheries and on coastal areas. The mangrove areas which serve as nursery grounds for important species of fish and crustaceans are also rich feeding ground for many species from various trophic levels. Thus, the destruction of mangroves could affect the availability of fry and broodstock and, consequently, aquaculture production and fisheries. While in coastal areas, the destruction of mangroves increased the risk of coastal erosion from storm surges and winds, accelerates the erosion of riverbanks, exposes acid sulfate soils, leading to poor production and mass mortality of stocks, and affects the freshwater supply through salt intrusion upstream among others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fixed-bed hydraulic model of Jupiter Inlet, Florida, was constructed for the purpose of testing measures designed to remedy problems of sediment erosion and deposition in the inlet area. Both tide-induced flows as well as waves were simulated in the model which was built on an undistorted scale of 1:49. Model verification was based on prototype measurements of waves, tides and currents. Results have been interpreted in terms of the influence of various proposed remedial schemes on flow velocity magnitude, distribution and wave height at various locations within the study area. A stability parameter has been utilized for evaluating the degree of sediment erosion or deposition at a given location. Various structural solutions were examined in the model. It is proposed that, in the initial phase of solution implementation, sediment removal/nourishment methods be used primarily to mitigate the existing problems. New structures, as per model test results, should be installed under subsequent phases, only if sediment management procedures do not prove to be adequate. The currently followed procedure of periodic sand trap dredging may be extended to include the new dredging/nourishment requirements. (PDF contains 245 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A summary is presented of research conducted on beach erosion associated with extreme storms and sea level rise. These results were developed by the author and graduate students under sponsorship of the University of Delaware Sea Grant Program. Various shoreline response problems of engineering interest are examined. The basis for the approach is a monotonic equilibrium profile of the form h = Ax2 /3 in which h is water depth at a distance x from the shoreline and A is a scale parameter depending primarily on sediment characteristics and secondarily on wave characteristics. This form is shown to be consistent with uniform wave energy dissipation per unit volume. The dependency of A on sediment size is quantified through laboratory and field data. Quasi-static beach response is examined to represent the effect of sea level rise. Cases considered include natural and seawalled profiles. To represent response to storms of realistic durations, a model is proposed in which the offshore transport is proportional to the "excess" energy dissipation per unit volume. The single rate constant in this model was evaluated based on large scale wave tank tests and confirmed with Hurricane Eloise pre- and post-storm surveys. It is shown that most hurricanes only cause 10% to 25% of the erosion potential associated with the peak storm tide and wave conditions. Additional applications include profile response employing a fairly realistic breaking model in which longshore bars are formed and long-term (500 years) Monte Carlo simulation including the contributions due to sea level rise and random storm occurrences. (PDF has 67 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report outlines the potential impacts of coastal protection structures on the resources of the Monterey Bay National Marine Sanctuary. At least 15 miles of the Sanctuary’s 300-mile shoreline are currently armored with seawalls and riprap revetments. Most of these coastal protection structures are placed above the mean high tide line, the official boundary of the Sanctuary, yet some influences of armoring impinge on the marine realm and on recreational use. In addition, continued sea level rise and accompanying coastal retreat will force many of these structures below the high tide line over time. The Monterey Bay National Marine Sanctuary staff has recognized the significance of coastal armoring, identifying it as a critical issue in the Coastal Armoring Action Plan of the draft Joint Management Plan. This summary is intended to provide general background information for Sanctuary policies on coastal armoring. The impacts discussed include: aesthetic depreciation, beach loss due to placement, access restriction, loss of sand supply from eroding cliffs, passive erosion, and active erosion. In addition, the potential biological impacts are explored. Finally, an appraisal of how differing armor types compare in relation to impacts, expense and engineering is presented. While the literature cited in this report focus predominantly on the California coast, the framework for this discussion could have implications for other actively eroding coastlines. (PDF contains 26 pages.)