260 resultados para benthic algal communities
Resumo:
The effects of stress on both microalgal and macroalgal communities are considered. On one hand the contrasting approaches of studies of these two communities reflect intrinsic differences in plant size, longevity and ease of handling. On the other hand they reveal that biological monitoring of the potentially deleterious effects of man's activities has focused largely on freshwater environments in which macroalgae only occasionally dominate. Large conspicuous plants can be readily investigated as individuals, whereas it is virtually impossible to trace effects of stress on an individual cell of a vegetatively-reproducing microalga; a population approach is almost inevitably necessary. However, rapid turnover rates, a spectrum of ecological characteristics distributed between many taxa, and the potential for statistical analysis, have facilitated the use of microalgae in environmental impact studies. Failure to extend such investigations into marine systems rests as much on man's ability to ignore environmental deterioration until it affects his quality of life as on the visual dominance of seaweeds around our coasts. However, large gaps remain in our knowledge of both large and small algae; some reported community changes over time are suspect, and the causes of even blatant changes are not always apparent.
Resumo:
This report is the final product of a two-year study conducted for the Office, Chief of Engineers, by the Moss Landing Marine Laboratories, Moss Landing, California, under Contract No. DACW39-74-C-OI51 with the Environmental Effects Laboratory (EEL), U. S. Army Engineer Waterways Experiment Station (WES), Yicksburg, Mississippi. (PDF contains 192 pages)
Resumo:
The Flower Garden Banks National Marine Sanctuary (FGBNMS) is located in the northwestern Gulf of Mexico approximately 180 km south of Galveston, Texas. The sanctuary’s distance from shore combined with its depth (the coral caps reach to within approximately 17 m of the surface) result in limited exposure of this coral reef ecosystem to natural and human-induced impacts compared to other coral reefs of the western Atlantic. In spite of this, the sanctuary still confronts serious impacts including hurricanes events, recent outbreaks of coral disease, an increase in the frequency of coral bleaching and the massive Diadema antillarum die-off during the mid-1980s. Anthropogenic impacts include large vessel anchoring, commercial and recreational fishing, recreational scuba diving, and oil and gas related activities. The FGBNMS was designated in 1992 to help protect against some of these impacts. Basic monitoring and research efforts have been conducted on the banks since the 1970s. Early on, these efforts focused primarily on describing the benthic communities (corals, sponges) and providing qualitative characterizations of the fish community. Subsequently, more quantitative work has been conducted; however, it has been limited in spatial scope. To complement these efforts, the current study addresses the following two goals put forth by sanctuary management: 1) to develop a sampling design for monitoring benthic fish communities across the coral caps; and 2) to obtain a spatial and quantitative characterization of those communities and their associated habitats.
Resumo:
I REPORT OF THE PICES WORKSHOP ON THE OKHOTSK SEA AND ADJACENT AREAS (pdf, 0.1 Mb) 1. Outline of the workshop 2. Summary reports from sessions 3. Recommendations of the workshop 4. Acknowledgments II SCIENTIFIC PAPERS SUBMITTED FROM SESSIONS 1. Physical Oceanography Sessions (pdf, 4 Mb) A. Circulation and water mass structure of the Okhotsk Sea and Northwestern Pacific Valentina D. Budaeva & Vyacheslav G. Makarov Seasonal variability of the pycnocline in La Perouse Strait and Aniva Gulf Valentina D. Budaeva & Vyacheslav G. Makarov Modeling of the typical water circulations in the La Perouse Strait and Aniva Gulf region Nina A. Dashko, Sergey M. Varlamov, Young-Ho Han & Young-Seup Kim Anticyclogenesis over the Okhotsk Sea and its influence on weather Boris S. Dyakov, Alexander A. Nikitin & Vadim P. Pavlychev Research of water structure and dynamics in the Okhotsk Sea and adjacent Pacific Howard J. Freeland, Alexander S. Bychkov, C.S. Wong, Frank A. Whitney & Gennady I. Yurasov The Ohkotsk Sea component of Pacific Intermediate Water Emil E. Herbeck, Anatoly I. Alexanin, Igor A. Gontcharenko, Igor I. Gorin, Yury V. Naumkin & Yury G. Proshjants Some experience of the satellite environmental support of marine expeditions at the Far East Seas Alexander A. Karnaukhov The tidal influence on the Sakhalin shelf hydrology Yasuhiro Kawasaki On the formation process of the subsurface mixed water around the Central Kuril Islands Lloyd D. Keigwin Northwest Pacific paleohydrography Talgat R. Kilmatov Physical mechanisms for the North Pacific Intermediate Water formation Vladimir A. Luchin Water masses in the Okhotsk Sea Andrey V. Martynov, Elena N. Golubeva & Victor I. Kuzin Numerical experiments with finite element model of the Okhotsk Sea circulation Nikolay A. Maximenko, Anatoly I. Kharlamov & Raissa I. Gouskina Structure of Intermediate Water layer in the Northwest Pacific Nikolay A. Maximenko & Andrey Yu. Shcherbina Fine-structure of the North Pacific Intermediate Water layer Renat D. Medjitov & Boris I. Reznikov An experimental study of water transport through the Straits of Okhotsk Sea by electromagnetic method Valentina V. Moroz Oceanological zoning of the Kuril Islands area in the spring-summer period Yutaka Nagata Note on the salinity balance in the Okhotsk Sea Alexander D. Nelezin Variability of the Kuroshio Front in 1965-1991 Vladimir I. Ponomarev, Evgeny P. Varlaty & Mikhail Yu. Cheranyev An experimental study of currents in the near-Kuril region of the Pacific Ocean and in the Okhotsk Sea Stephen C. Riser, Gennady I. Yurasov & Mark J. Warner Hydrographic and tracer measurements of the water mass structure and transport in the Okhotsk Sea in early spring Konstantin A. Rogachev & Andrey V. Verkhunov Circulation and water mass structure in the southern Okhotsk Sea, as observed in summer, 1994 Lynne D. Talley North Pacific Intermediate Water formation and the role of the Okhotsk Sea Anatoly S. Vasiliev & Fedor F. Khrapchenkov Seasonal variability of integral water circulation in the Okhotsk Sea B. Sea ice and its relation to circulation and climate V.P. Gavrilo, G.A. Lebedev & A.P. Polyakov Acoustic methods in sea ice dynamics studies Nina M. Pestereva & Larisa A. Starodubtseva The role of the Far-East atmospheric circulation in the formation of the ice cover in the Okhotsk Sea Yoshihiko Sekine Anomalous Oyashio intrusion and its teleconnection with Subarctic North Pacific circulation, sea ice of the Okhotsk Sea and air temperature of the northern Asian continent C. Waves and tides Vladimir A. Luchin Characteristics of the tidal motions in the Kuril Straits George V. Shevtchenko On seasonal variability of tidal constants in the northwestern part of the Okhotsk Sea D. Physical oceanography of the Japan Sea/East Sea Mikhail A. Danchenkov, Kuh Kim, Igor A. Goncharenko & Young-Gyu Kim A “chimney” of cold salt waters near Vladivostok Christopher N.K. Mooers & Hee Sook Kang Preliminary results from a numerical circulation model of the Japan Sea Lev P. Yakunin Influence of ice production on the deep water formation in the Japan Sea 2. Fisheries and Biology Sessions (pdf, 2.8 Mb) A. Communities of the Okhotsk Sea and adjacent waters: composition, structure and dynamics Lubov A. Balkonskaya Exogenous succession of the southwestern Sakhalin algal communities Tatyana A. Belan, Yelena V. Oleynik, Alexander V. Tkalin & Tat’yana S. Lishavskaya Characteristics of pelagic and benthic communities on the North Sakhalin Island shelf Lev N. Bocharov & Vladimir K. Ozyorin Fishery and oceanographic database of Okhotsk Sea Victor V. Lapko Interannual dynamics of the epipelagic ichthyocen structure in the Okhotsk Sea Valentina I. Lapshina Quantitative seasonal and year-to-year changes of phytoplankton in the Okhotsk Sea and off Kuril area of the Pacific Lyudmila N. Luchsheva Biological productivity in anomalous mercury conditions (northern part of Okhotsk Sea) Inna A. Nemirovskaya Origin of hydrocarbons in the ecosystems of coastal region of the Okhotsk Sea Tatyana A. Shatilina Elements of the Pacific South Kuril area ecosystem Vyacheslav P. Shuntov & Yelena P. Dulepova Biota of the Okhotsk Sea: Structure of communities, the interannual dynamics and current status B. Abundance, distribution, dynamics of the common fishes of the Okhotsk Sea Yuri P. Diakov Influence of some abiotic factors on spatial population dynamics of the West Kamchatka flounders (Pleuronectidae) Gordon A. McFarlane, Richard J. Beamish & Larisa M. Zverkova An examination of age estimates of walleye pollock (Theragra chalcogramma) from the Sea of Okhotsk using the burnt otolith method and implications for stock assessment and management Larisa P. Nikolenko Migration of Greenland turbot (Reinhardtius hippoglossoides) in the Okhotsk Sea Galina M. Pushnikova Fisheries impact on the Sakhalin-Hokkaido herring population Vidar G. Wespestad Is pollock overfished? C. Salmon of the Okhotsk Sea: biology, abundance and stock identification Vladimir A. Belyaev, Alexander Yu. Zhigalin Epipelagic Far Eastern sardine of the Okhotsk Sea Yuri E. Bregman, Victor V. Pushnikov, Lyudmila G. Sedova & Vladimir Ph. Ivanov A preliminary report on stock status and productive capacity of horsehair crab Erimacrus isenbeckii (Brandt) in the South Kuril Strait Natalia T. Dolganova Mezoplankton distribution in the West Japan Sea Vladimir V. Efremov, Richard L. Wilmot, Christine M. Kondzela, Natalia V. Varnavskaya, Sharon L. Hawkins & Maria E. Malinina Application of pink and chum salmon genetic baseline to fishery management Vyacheslav N. Ivankov & Valentina V. Andreyeva Strategy for culture, breeding and numerous dynamics of Sakhalin salmon populations Alla M. Kovalevskaya, Natalia I. Savelyeva & Dmitry M. Polyakov Primary production in Sakhalin shelf waters Tatyana N. Krupnova Some reasons for resource reduction of Laminaria japonica (Primorye region) Lyudmila N. Luchsheva & Anatoliy I. Botsul Mercury in bottom sediments of the northeastern Okhotsk Sea Pavel A. Luk’yanov, Natalia I. Belogortseva, Alexander A. Bulgakov, Alexander A. Kurika & Olga D. Novikova Lectins and glycosidases from marine macro and micro-organisms of Japan and Okhotsk Seas Boris A. Malyarchuk, Olga A. Radchenko, Miroslava V. Derenko, Andrey G. Lapinski & Leonid L. Solovenchuk PCR-fingerprinting of mitochondrial genome of chum salmon, Oncorhynchus keta Alexander A. Mikheev Chaos and relaxation in dynamics of the pink salmon (Oncorhynchus gorbuscha) returns for two regions Yuri A. Mitrofanov & Larisa N. Lesnikova Fish-culture of Pacific Salmons increases the number of heredity defects Larisa P. Nikolenko Abundance of young halibut along the West Kamchatka shelf in 1982-1992 Sergey A. Nizyaev Living conditions of golden king crab Lithodes aequispina in the Okhotsk Sea and near the Kuril Islands Ludmila A. Pozdnyakova & Alla V. Silina Settlements of Japanese scallop in Reid Pallada Bay (Sea of Japan) Galina M. Pushnikova Features of the Southwest Okhotsk Sea herring Vladimir I. Radchenko & Igor I. Glebov Present state of the Okhotsk herring stock and fisheries outlook Alla V. Silina & Ida I. Ovsyannikova Distribution of the barnacle Balanus rostratus eurostratus near the coasts of Primorye (Sea of Japan) Galina I. Victorovskaya Dependence of urchin Strongylocentrotus intermedius reproduction on water temperature Anatoly F. Volkov, Alexander Y. Efimkin & Valery I. Chuchukalo Feeding habits of Pacific salmon in the Sea of Okhotsk and in the Pacific waters of Kuril Islands in summer 1993 Larisa M. Zverkova & Georgy A. Oktyabrsky Okhotsk Sea walleye pollock stock status Tatyana N. Zvyagintseva, Elena V. Sundukova, Natalia M. Shevchenko & Ludmila A. Elyakova Water soluble polysaccharides of some Far-Eastern seaweeds 3. Biodiversity Program (pdf, 0.2 Mb) A. Biodiversity of island ecosystems and seasides of the North Pacific Larissa A. Gayko Productivity of Japanese scallop Patinopecten yessoensis (IAY) culture in Posieta Bay (Sea of Japan) III APPENDICES 1. List of acronyms 2. List of participants (Document pdf contains 431 pages)
Resumo:
This report contains a chemical and biological characterization of sediments from the St. Thomas East End Reserves (STEER) in St. Thomas, U.S. Virgin Islands (USVI). The STEER Management Plan (published in 2011) identified chemical contaminants and habitat loss as high or very high threats and called for a characterization of chemical contaminants as well as an assessment of their effects on natural resources. The baseline information contained in this report on chemical contaminants, toxicity and benthic infaunal community composition can be used to assess current conditions, as well as the efficacy of future restoration activities. In this phase of the project, 185 chemical contaminants, including a number of organic (e.g., hydrocarbons and pesticides) and inorganic (e.g., metals) compounds, were analyzed from 24 sites in the STEER. Sediments were also analyzed using a series of toxicity bioassays, including amphipod mortality, sea urchin fertilization impairment, and the cytochrome P450 Human Reporter Gene System (HRGS), along with a characterization of the benthic infaunal community. Higher levels of chemical contaminants were found in Mangrove Lagoon and Benner Bay in the western portion of the study area than in the eastern area. The concentrations of polychlorinated biphenyls (PCBs), DDT (dichlorodiphenyltrichloroethane), chlordane, zinc, copper, lead and mercury were above a NOAA sediment quality guideline at one or more sites, indicating impacts may be present in more sensitive species or life stages in the benthic environment. Copper at one site in Benner Bay, however, was above a NOAA guideline indicating that effects on benthic organisms were likely. The antifoulant boat hull ingredient tributyltin, or TBT, was found at the third highest concentration in the history of NOAA’s National Status and Trends (NS&T) Program, which monitors the Nation’s coastal and estuarine waters for chemical contaminants and bioeffects. Unfortunately, there do not appear to be any established sediment quality guidelines for TBT. Results of the bioassays indicated significant sediment toxicity in Mangrove Lagoon and Benner Bay using multiple tests. The benthic infaunal communities in Mangrove Lagoon and Benner Bay appeared severely diminished.
Resumo:
This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.
Resumo:
The Monitor National Marine Sanctuary (MNMS) was the nation’s first sanctuary, originally established in 1975 to protect the famous civil war ironclad shipwreck, the USS Monitor. Since 2008, sanctuary sponsored archeological research has branched out to include historically significant U-boats and World War II shipwrecks within the larger Graveyard of the Atlantic off the coast of North Carolina. These shipwrecks are not only important for their cultural value, but also as habitat for a wide diversity of fishes, invertebrates and algal species. Additionally, due to their unique location within an important area for biological productivity, the sanctuary and other culturally valuable shipwrecks within the Graveyard of the Atlantic are potential sites for examining community change. For this reason, from June 8-30, 2010, biological and ecological investigations were conducted at four World War II shipwrecks (Keshena, City of Atlanta, Dixie Arrow, EM Clark), as part of the MNMS 2010 Battle of the Atlantic (BOTA) research project. At each shipwreck site, fish community surveys were conducted and benthic photo-quadrats were collected to characterize the mobile conspicuous fish, smaller prey fish, and sessile invertebrate and algal communities. In addition, temperature sensors were placed at all four shipwrecks previously mentioned, as well as an additional shipwreck, the Manuela. The data, which establishes a baseline condition to use in future assessments, suggest strong differences in both the fish and benthic communities among the surveyed shipwrecks based on the oceanographic zone (depth). In order to establish these shipwrecks as sites for detecting community change it is suggested that a subset of locations across the shelf be selected and repeatedly sampled over time. In order to reduce variability within sites for both the benthic and fish communities, a significant number of surveys should be conducted at each location. This sampling strategy will account for the natural differences in community structure that exist across the shelf due to the oceanographic regime, and allow robust statistical analyses of community differences over time.
Resumo:
A total of 234 species of fish have been recorded from the St Martin Island. Of which, 98 species are coral associated. The total number of recorded mollusc and crab species stands at 187 and 7 species respectively. A total of 66 coral species were recorded, of which 19 are fossil corals, 36 living corals and the rest are under 6 families of subclass Octocorallia (soft corals). A total of 14 species of algae have been recorded from the St. Martin's Island. There is an estimated amount of 1500 MT red sea weed biomass available around the St. Martin's Island. The island contains some of the most unique, benthic community associations in Bangladesh, not found anywhere else in the South Asian region. The unique marine communities have very high scientific value for research and monitoring and there are only a few examples worldwide, where coral-algal communities dominate rocky reefs. The economy of the island is based on fishing. It is estimated that, about 1650 MT of fish are caught annually. Over-exploitation of renewable marine and coastal resources (e.g., rocky reef fisheries, coral and shell extraction; removal of coastal vegetation from inter-tidal and sub-tidal habitats) is a major threat to this ecosystem. Destructive fishing practices, mainly the use of rock-weighted gill nets over the inshore boulder reefs is of prime aggravates. Proper implementation of the rules and regulation for Ecologically Critical Areas (ECA's), alternative livelihood for the local people and further research should be immediately taken for sustainable utilization and to save the rich biodiversity of the only coral island in Bangladesh.
Resumo:
Biodiversity and distribution of benthic Foraminifera and Ostracoda in the continental shelf sediments of the Omman Sea was studied in order to indicating of the composition of benthic foraminiferal and ostracodal communities and determining of their relationship with the environmental factors of the Omman Sea. Sediment samples were gathered in winter 2006 from twelve stations ranging in depth from 30 to 103 meters. Environmental factors including depth, temperature, salinity, dissolved Oxygen and pH were measured with a CTD system during sampling time and grain size and total organic matter were measured in laboratory. From the overall 57 benthic foram species, there were 52 identified species belong to 25 genera of 16 families. The cosmopolitan foraminifer, Ammonia beccarii, was common in all sampling stations. The composition of benthic foram communities had a highly positive correlation with depth, salinity and total organic matter. From the overall 30 ostracod species, there were 26 identified species belong to 22 genera of 13 families. Diversity and aboundance of ostracoda of the Oman Sea decreased from east to west and from south to north but increased slightly in the northwest (near the Strait of Hormoz). Ostracoda of the genus Propontocypris were common in all sampling stations but the genera Cyprideis, Paradoxostom and Hemicytheridea were rare in the Oman Sea. Diversity and aboundance of ostracoda in northern regions were less than southern and were less than foraminifera too. The composition of ostracodal communities had a highly positive correlation with dept, salinity and grain size. Biodiversity and distribution pattern of benthic foraminifera and ostracoda were being different in various sampling stations, especially between northern and southern regions. Water depth, salinity and structure of the sediments were the most important abiotic factors controlling the distribution pattern of benthic foraminifera and ostracoda in the Omman Sea. None existence or rare observation of structural abnormalities and oil polluted individuals in the vicinity of all sampling stations, resulted to the "clean" benthic environment of the Omman Sea.
Resumo:
A good understanding of the population dynamics of algal communities is vital in many ecological and pollution studies of freshwater and oceanic systems. Present methods require manual counting and identification of algae and can take up to 90 min to obtain a statistically reliable count on a complex population. Several alternative techniques to accelerate the process have been tried on marine samples but none have been completely successful because insufficient effort has been put into verifying the technique before field trials. The objective of the present study has been to assess the potential of in vivo fluorescence of algal pigments as a means of automatically identifying algae. For this work total fluorescence spectroscopy was chosen as the observation technique.
Resumo:
The recovery of benthic communities inside the western Gulf of Maine fishing closure area was evaluated by comparing invertebrate assemblages at sites inside and outside of the closure four to six years after the closure was established. The major restriction imposed by the closure was a year-round prohibition of bottom gillnets and otter trawls. A total of 163 seafloor sites (~half inside and half outside the closure) within a 515-km2 study area were sampled with some combination of Shipek grab, Wildco box corer, or underwater video. Bottom types ranged from mud (silt and clay) to boulders, and the effects of the closure on univariate measures (total density, biomass, taxonomic richness) of benthos varied widely among sediment types. For sites with predominantly mud sediments, there were mixed effects on inside and outside infauna and no effect on epifauna. For sites with mainly sand sediments, there were higher density, biomass, and taxonomic richness for infauna inside the closure, but no significant effects on epifauna. For sites dominated by gravel (which included boulders in some areas), there were no effects on infauna but strong effects on epifaunal density and taxonomic richness. For fishing gear, the data indicated that infauna recovered in sand from the impacts of otter trawls operated inside the closure but that they did not recover in mud, and that epifauna recovered on gravel bottoms from the impact of gillnets used inside the closure. The magnitudes of impact and recovery, however, cannot be inferred directly from our data because of a confounding factor of different fishing intensities outside the closure for a direct comparison of preclosure and postclosure data. The overall negative impact of trawls is likely underestimated by our data, whereas the negative impact of gillnets is likely overestimated.
Resumo:
Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.
Resumo:
Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.