24 resultados para Wrapper validation
Resumo:
This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of the model in both modes and their procedures are described along with a few sample runs. WEMo model output in RWE mode (wave height and wave energy) is compared against data collected from wave sensors near Harkers Island, North Carolina for validation purposes. Computed results agreed well with the wave sensors data indicating that WEMo can be an effective tool in predicting local wave energy in closed estuarine environments. (PDF contains 31 pages)
Resumo:
ENGLISH: Increments in otoliths (sagittae) were examined, using light and scanning electron microscopy, to determine ages and estimate growth rates of larval and early-juvenile black skipjack, Euthynnus lineatus. Larvae and juveniles were collected between 1987 and 1989 from coastal waters of Panama in the eastern Pacific Ocean. Results from a laboratory experiment indicated that immersion for 6 and 12 hours in a 200 mg/L solution of tetracycline hydrochloride adequately marks otoliths and that increments are formed daily in the sagittae of postflexion larvae and early juveniles. Further, survival rates of tetracycline-treated fish were not significantly different from those of control fish. Growth rates were derived from length-age relationships of 218 field-collected specimens ranging in size from 5.7 to 20.3 mm SL. A growth rate of 0.70 mm/d was estimated from the weighted regression of standard length on age for all specimens. This rate lies within the range reported for larvae and early juveniles of other species of subtropical and tropical scombrids. Growth rates of postflexion larvae and early juveniles were not significantly different between the rainy season in July-August 1988 and the dry, upwelling season in January-February 1989. Growth was, however, significantly more variable for older individuals in July-August than in January-February, and may correspond, in part, to seasonal patchiness of prey. The growth rates of the otoliths relative to fish length were also not significantly different between seasons; however, the otoliths were larger relative to the lengths of fish collected in the rainy season, which may reflect slower growth during earlier larval stages. SPANISH: Se examinaron incrementos en otolitos (ságitas), usando microscopia de luz y de barrido electrónico, a fin de determinar la edad y estimar las tasas de crecimiento de barriletes negros, Euthynnus lineatus, larvales y juveniles tempranos. Entre 1987 y 1989 se capturaron larvas y juveniles en las aguas costeras de Panamá en el Océano Pacífico oriental. Los resultados de un experimento de laboratorio indicaron que una inmersión de 6 a 12 horas de duración en una solución de 200 mg/L de hidrocloro de tetraciclina marca los otolitos adecuadamente y que los incrementos se forman a diario en las ságitas de larvas en postflexión y juveniles tempranos. Además, las tasas de supervivencia de los peces tratados con tetraciclina no fueron significativamente diferentes a aquellas de los peces de control. Se calcularon las tasas de crecimiento a partir de las relaciones de talla-edad de 218 especímenes de TE entre 5.7 y 20.3 mm capturados en el mar. Se estimó.una tasa de crecimiento de 0.70 mm/día a partir de la regresión ponderada de talla estándar sobre edad para todos los especímenes. Esta tasa cae dentro del rango reportado para larvas y juveniles tempranos de otras especies de escómbridos subtropicales y tropicales. Las tasas de crecimiento de larvas en postflexión y juveniles tempranos no fueron significativamente diferentes entre la temporada de lluvias en julio-agosto de 1988 y la temporada de sequía y afloramiento en enero-febrero de 1989. Sin emoargo, el crecimiento fue significativamente más variable para los individuos de mayor edad en julio-agosto que en enero-febrero, y quizás corresponda parcialmente a la irregularidad temporal de la abundancia de presas. Las tasas de crecimiento de los otolitos en relación a la talla de los peces tampoco fueron significativamente diferentes entre temporadas; sin embargo, los otolitos eran más grandes en relación a la talla en peces capturados en la temporada de lluvias, lo cual podría reflejar crecimiento más lento durante las etapas larvales más tempranas. (PDF contains 42 pages.)
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
The stock assessment task group report (1991) mentions that fish counters could play a key role in providing data on the size of the adult stock, and in particular the migratory salmonid stock. This report assesses the performance of the 'logie' fish counter at Forge Weir on the River Lune. Using video surveillance, a total of 1137 hours time lapse and 15 hours real time were used for validation purposes. This report looks at materials and methods, counting accuracy, sizing ability and environmental conditions, performance across the electrode array and salmonid swimming speed.
Resumo:
This report looks at the validation of the performance of the Logie 2100A fish counter which was carried out at Forge Weir (River Lune) and Gunnislake Fish Pass (River Tamar), using a video recording system.
Resumo:
This study documents validation of vertebral band-pair formation in spotted gully shark (Triakis megalopterus) with the use of fluorochrome injection and tagging of captive and wild sharks over a 21-year period. Growth and mortality rates of T. megalopterus were also estimated and a demographic analysis of the species was conducted. Of the 23 OTC (oxytetracycline) -marked vertebrae examined (12 from captive and 11 from wild sharks), seven vertebrae (three from captive and four from wild sharks) exhibited chelation of the OTC and fluoresced under ultraviolet light. It was concluded that a single opaque and translucent band pair was deposited annually up to at least 25 years of age, the maximum age recorded. Reader precision was assessed by using an index of average percent error calculated at 5%. No significant differences were found between male and female growth patterns (P>0.05), and von Bertalanffy growth model parameters for combined sexes were estimated to be L∞=1711.07 mm TL, k=0.11/yr and t0=–2.43 yr (n=86). Natural mortality was estimated at 0.17/yr. Age at maturity was estimated at 11 years for males and 15 years for females. Results of the demographic analysis showed that the population, in the absence of fishing mortality, was stable and not significantly different from zero and particularly sensitive to overfishing. At the current age at first capture and natural mortality rate, the fishing mortality rate required to result in negative population growth was low at F>0.004/ yr. Elasticity analysis revealed that juvenile survival was the principal factor in explaining variability in population growth rate.
Age validation of great hammerhead shark (Sphyrna mokarran), determined by bomb radiocarbon analysis
Resumo:
Preliminary validation of annual growth band deposition in vertebrae of great hammerhead shark (Sphyrna mokarran) was conducted by using bomb radiocarbon analysis. Adult specimens (n=2) were collected and thin sections of vertebral centra were removed for visual aging and use in radiocarbon assays. Vertebral band counts were used to estimate age, and year of formation was assigned to each growth band by subtracting estimated age from the year of capture. A total of 10 samples were extracted from growth bands and analyzed for Δ14C. Calculated Δ14C values from dated bands were compared to known-age reference chronologies, and the resulting patterns indicated annual periodicity of growth bands up to a minimum age of 42 years. Trends in Δ14C across time in individual specimens indicated that vertebral radiocarbon is conserved through time but that habitat and diet may inf luence Δ14C levels in elasmobranchs. Although the age validation reported here must be considered preliminary because of the small sample size and narrow age range of individuals sampled, it represents the first confirmation of age in S. mokarran, further illustrating the usefulness of bomb radiocarbon analysis as a tool for life history studies in elasmobranchs.
Resumo:
We used bomb radiocarbon (14C) in this age validation study of Dover sole (Microstomus pacificus). The otoliths of Dover sole, a commercially important fish in the North Pacific, are difficult to age and ages derived from the current break-andburn method were not previously validated. The otoliths used in this study were chosen on the basis of estimated birth year and for the ease of interpreting growth zone patterns. Otolith cores, material representing years 0 through 3, were isolated and analyzed for 14C. Additionally, a small number of otoliths with difficult-to-interpret growth patterns were analyzed for 14C to help determine age interpretation. The measured Dover sole 14C values in easier-to-interpret otoliths were compared with a 14C reference chronology for Pacific halibut (Hippoglossus stenolepis) in the North Pacific. We used an objective statistical analysis where sums of squared residuals between otolith 14C values of Dover sole and the reference chronology were examined. Our statistical analysis also included a procedure where the Dover sole 14C values were standardized to the reference chronology. These procedures allowed an evaluation of aging error. The 14C results indicated that the Dover sole age estimates from the easier-to-interpret otoliths with the break-and-burn method are accurate. This study validated Dover sole ages from 8 to 47 years.
Resumo:
The long-snouted seahorse (Hippocampus guttulatus) (Cuvier, 1829), was used to validate the pre-dictive accuracy of three progressively realistic models for estimating the realized annual fecundity of asyn-chronous, indeterminate, multiple spawners. Underwater surveys and catch data were used to estimate the duration of the reproductive season, female spawning frequency, male brooding frequency, and batch fecun-dity. The most realistic model, a generalization of the spawning fraction method, produced unbiased estimates of male brooding frequency (mean ±standard deviation [SD]=4.2 ±1.6 broods/year). Mean batch fecundity and realized annual fecundity were 213.9 (±110.9) and 903.6 (±522.4), respectively. However, females prepared significantly more clutches than the number of broods produced by males. Thus, methods that infer spawning frequency from patterns in female egg production may lead to significant overestimates of realized annual fecundity. The spawning fraction method is broadly applicable to many taxa that exhibit parental care and can be applied nondestructively to species for which conservation is a concern.
Resumo:
In recent years, a decrease in the abundance of bluefish (Pomatomus saltatrix) has been observed (Fahay et al., 1999; Munch and Conover, 2000) that has led to increased interest in a better understanding the life history of the species. Estimates of several young-of-the-year (YOY) life history characteristics, including the importance and use of estuaries as nursery habitat (Kendall and Walford, 1979) and size-dependant mortality (Hare and Cowen, 1997), are reliant upon the accuracy of growth determination. By using otoliths, it is possible to use back-calculation formulae (BCFs) to estimate the length at certain ages and stages of development for many species of fishes. Use of otoliths to estimate growth in this way can provide the same information as long-term laboratory experiments and tagging studies without the time and expense of rearing or recapturing fish. The difficulty in using otoliths in this way lies in validating that 1) there is constancy in the periodicity of the increment formation, and 2) there is no uncoupling of the relationship between somatic and otolith growth. To date there are no validation studies demonstrating the relationship between otolith growth and somatic growth for bluefish. Daily increment formation in otoliths has been documented for larval (Hare and Cowen, 1994) and juvenile bluefish (Nyman and Conover, 1988). Hare and Cowen (1995) found ageindependent variability in the ratio of otolith size to body length in early age bluefish, although these differences varied between ontogenetic stages. Furthermore, there have been no studies where an evaluation of back-calculation methods has been combined with a validation of otolithderived lengths for juvenile bluefish.
Resumo:
The gray snapper (Lutjanus griseus) is a temperate and tropical reef fish that is found along the Gulf of Mexico and Atlantic coasts of the southeastern United States. The recreational fishery for gray snapper has developed rapidly in south Louisiana with the advent of harvest and seasonal restrictions on the established red snapper (L. campechanus) fishery. We examined the age and growth of gray snapper in Louisiana with the use of cross-sectioned sagittae. A total of 833 specimens, (441 males, 387 females, and 5 of unknown sex) were opportunistically sampled from the recreational fishery from August 1998 to August 2002. Males ranged in size from 222 to 732 mm total length (TL) and from 280 g to 5700 g total weight (TW) and females ranged from 254 to 756 mm TL and from 340 g to 5800 g TW. Both edge analysis and bomb radiocarbon analyses were used to validate otolith-based age estimates. Ages were estimated for 718 individuals; both males and females ranged from 1 to 28 years. The von Bertalanffy growth models derived from TL at age were Lt = 655.4{1–e[–0.23(t)]} for males, Lt = 657.3{1–e[– 0.21(t)]} for females, and L t = 656.4{1–e[– 0.22 (t)]} for all specimens of known sex. Catch curves were used to produce a total mortality (Z) estimate of 0.17. Estimates of M calculated with various methods ranged from 0.15 to 0.50; however we felt that M= 0.15 was the most appropriate estimate based on our estimate of Z. Full recruitment to the gray snapper recreational fishery began at age 4, was completed by age 8, and there was no discernible peak in the catch curve dome.
Resumo:
Rockfishes (Sebastes spp.) support one of the most economically important f isheries of the Pacific Northwest and it is essential for sustainable management that age estimation procedures be validated for these species. Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon (14C) signal in the ocean environment that scientists have identified as a useful tracer and chronological marker in natural systems. In this study, we first demonstrated that fewer samples are necessary for age validation using the bomb-generated 14C signal by emphasizing the utility of the time-specific marker created by the initial rise of bomb-14C. Second, the bomb-generated 14C signal retained in fish otoliths was used to validate the age and age estimation method of the quillback rockfish (Sebastes maliger) in the waters of southeast Alaska. Radiocarbon values from the first year’s growth of quillback rockfish otoliths were plotted against estimated birth year to produce a 14C time series spanning 1950 to 1985. The initial rise in bomb-14C from prebomb levels (~ –90‰) occurred in 1959 [±1 year] and 14C levels rose relatively rapidly to peak Δ14C values in 1967 (+105.4‰) and subsequently declined through the end of the time series in 1985 (+15.4‰). The agreement between the year of initial rise of 14C levels from the quillback rockfish time series and the chronology determined for the waters of southeast Alaska from yelloweye rockfish (S. ruberrimus) otoliths validated the aging method for the quillback rockfish. The concordance of the entire quillback rockfish 14C time series with the yelloweye rockfish time series demonstrated the effectiveness of this age validation technique, confirmed the longevity of the quillback rockfish up to a minimum of 43 years, and strongly confirms higher age estimates of up
Resumo:
Two examples of indirect validation are described for age-reading methods of Pacific cod (Gadus macrocephalus). Aging criteria that exclude faint translucent zones (checks) in counts of annuli and criteria that include faint zones were both tested. Otoliths from marked and recaptured fish were used to back-calculate the length of each fish at the time of its release by using measurements of the area of annuli. Estimated fish size at time of release and actual observed fish size were similar, supporting the assumption that translucent zones are laid down on an annual basis. A second method for validating reading criteria used otolith age and von Bertalanffy parameters, estimated from the tagging data, to predict how much each fish grew in length after tagging. We found that otolith aging criteria applied to otoliths from tagged and recovered Pacific cod predicted quite accurately the growth increments that we observed in these specimens. These results provide further evidence that the current aging criteria are not underestimating the age of the fish and support our current interpretation of checks (i.e., as subannual marks). We expect these indirect validations to advance age determination for Pacific cod, which in turn would enhance development of stock assessment methods based on age structure for this species in the eastern Bering Sea.
Resumo:
Age estimates for striped trumpeter (Latris lineata) from Tasmanian waters were produced by counting annuli on the transverse section of sagittal otoliths and were validated by comparison of growth with known-age individuals and modal progression of a strong recruitment pulse. Estimated ages ranged from one to 43 years; fast growth rates were observed for the first five years. Minimal sexual dimorphism was shown to exist between length, weight, and growth characteristics of striped trumpeter. Seasonal growth variability was strong in individuals up to at least age four, and growth rates peaked approximately one month after the observed peak in sea surface temperature. A modified two-phase von Bertalanffy growth function was fitted to the length-at-age data, and the transition between growth phases was linked to apparent changes in physiological and life history traits, including offshore movement as fish approach maturity. The two-phase curve was found to represent the mean length at age in the data better than the standard von Bertalanffy growth function. Total mortality was estimated by using catch curve analysis based on the standard and two-phase von Bertalanffy growth functions, and estimates of natural mortality were calculated by using two empirical models, one based on longevity and the other based on the parameters L∞ and k from both growth functions. The interactions between an inshore gillnet fishery targeting predominately juveniles and an offshore hook fishery targeting predominately adults highlight the need to use a precautionary approach when developing harvest strategies.