94 resultados para Vulnerable environment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(1 poster)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In July, 1974 we began a baseline study of the Moss Landing-Elkhorn Slough marine environment for PG&E as mandated by the Coastal Commission. This report constitutes results of the first year's program. It is divided into three sections, oceanography, benthic invertebrate ecology, and fish and zooplankton ecology. (PDF contains 226 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trawl fishery for pelagic annorhead, Pseuaopentaceros wheeleri(fonnerly referred to as Pentaceros richardsoni), and alfonsin, Beryx splendens, over the central North Pacific seamounts has a relatively short history. Before 1967, fishery scientists were generally unaware of the resources on seamounts; however, the discovery of commercial concentrations of pelagic armorhead on seamounts in the southern Emperor Seamounts by a Russian commercial trawler in November 1967 led to almost immediate exploitation of the species by the Soviets. Unconfinned reports indicated that the schools of pelagic annorhead on the seamounts averaged 30 m thick and catches averaged from 3 to 50 metric tons on 10-20 min hauls (Sakiura 1972). Japanese trawlers entered the fishery in 1969. To assist in the development of this tishery, Japanese research vessels conducted extensive surveys in 1972 on the distribution and potential for development ofthe pelagic armorhead and alfonsin resources. The results of their surveys to the central North Pacific and mid-Pacific seamounts showed that many had summits that were too deep for trawling. Those found suitable were concentrated in the southern Emperor-northern Hawaiian Ridge. (PDF file contains 113 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaculture depends largely upon a good aquatic environment. The quality of the aquatic medium determines success to a large extent in aquaculture. The medium is particularly vulnerable to excessive abstraction (i.e surface or groundwater) and contamination from a range of sources (industrial, agricultural or domestic) as well as risks of self-pollution. Environmental management options proffered so far include: improvements in farming performance (especially related to feed and feeding strategies, stocking densities, water quality management, disease prevention and control, use of chemicals, etc.) and in the selection of sites and culturable species, treatment of effluents, sensitivity of recipient waters and enforcement of environmental regulations and guidelines specific to the culture system. There are presently conceptual frameworks for aquatic environment management backed by legal administrative tools to create or enforce rational system for water management, fisheries and aquaculture development strengthened by adaptive institutionalisation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport. Eight recommendations were made by participants at the conclusion of the workshop and are presented here without prioritization: 1. Encourage research toward development of energy scavenging devices of suitable sizes for use in remote sensing packages attached to marine animals. 2. Encourage funding sources for development of new sensor technologies and animal-borne tags. 3. Develop animal-borne environmental sensor platforms that offer more combined systems and improved data recovery methodologies, and expand the geographic scope of complementary fixed sensor arrays. 4. Engage the oceanographic community by: a. Offering a mini workshop at an AGU ocean sciences conference for people interested in developing an ocean carbon program that utilizes animal-borne sensor technology. b. Outreach to chemical oceanographers. 5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be applied to marine sensors (e.g. biomedical field). 6. Encourage the NOAA Permitting Office to: a. Make a more predictable, reliable, and consistent permitting system for using animal platforms. b. Establish an evaluation process. c. Adhere to established standards. 7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms. 8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking as effective samplers of the marine environment, and use of animals as ocean sensor technology platforms. [PDF contains 20 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Cayman Islands we are enriched with a wonderful natural environment. In this Green Guide to our Marine Environment we hope to show you how all of our lives on these three magical islands are intimately connected to the land and the sea that surrounds it. Like many of our Caribbean neighbours, a large proportion of our economy depends on reef-based fishing, diving and tourism. The beauty of our coral reefs, our beaches and our lagoons is that it is part of our heritage, and it draws many thousands of overseas visitors to our shores. It is our responsibility, as stakeholders sharing this beautiful environment, to do what we can to minimise our impact upon it. Ogier has sponsored the Green Guide, and through this publication, is helping us to preserve our natural and cultural heritage.... [PDF contains 32 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homestead fish culture is a recent innovation for mass production of fish at backyard in Nigeria. The processes of pond construction often have resulted in soil disturbances, vegetation losses, and creation of new aquatic environment. The paper discusses homestead ponds in Nigeria, their potential impact on the environment which includes erosion, over flooding, pest and disease, accident risk, undesired fossil fuel production, vegetation destruction and fish genetic conservation, strategies for environmental management in relation to pond construction are suggested

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change has rapidly emerged as a significant threat to coastal areas around the world. While uncertainty regarding distribution, intensity, and timescale inhibits our ability to accurately forecast potential impacts, it is widely accepted that changes in global climate will result in a variety of significant environmental, social, and economic impacts. Coastal areas are particularly vulnerable to the effects of climate change and the implications of sea-level rise, and coastal communities must develop the capacity to adapt to climate change in order to protect people, property, and the environment along our nation’s coasts. The U.S. coastal zone is highly complex and variable, consisting of several regions that are characterized by unique geographic, economic, social and environmental factors. The degree of risk and vulnerability associated with climate change can vary greatly depending on the exposure and sensitivity of coastal resources within a given area. The ability of coastal communities to effectively adapt to climate change will depend greatly on their ability to develop and implement feasible strategies that address unique local and regional factors. A wide variety of resources are available to assist coastal states in developing their approach to climate change adaptation. However, given the complex and variable nature of the U.S. coastline, it is unlikely that a single set of guidelines can adequately address the full range of adaptation needs at the local and regional levels. This panel seeks to address some of the unique local and regional issues facing coastal communities throughout the U.S. including anticipated physical, social, economic and environmental impacts, existing resources and guidelines for climate change adaptation, current approaches to climate change adaptation planning, and challenges and opportunities for developing adaptation strategies. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise and inundation were stated to be the highest priorities in the community-developed Ocean Research Priorities Plan and Implementation Strategy in 2005. Although they remain stated priorities, very few resources have been allocated towards this challenge. Inundation poses a substantial risk to many coastal communities, and the risk is projected to increase because of continued development, changes in the frequency and intensity of inundation events, and acceleration in the rate of sea-level rise along our vulnerable shorelines. (PDF contains 4 pages) There is an increasing urgency for federal and state governments to focus on the local and regional levels and consistently provide the information, tools, and methods necessary for adaptation. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. A workshop held in December 2000 on coastal inundation and sea level rise proposes a shared framework that can help guide where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)