43 resultados para United States. Army. Corps of Engineers. Wilmington District.
Resumo:
The impacts of widening and deepening the existing navigation channel in Grays Harbor on Dungeness crab, crangon shrimp and fish was investigated. The spatial and temporal distribution of these organisms was studied using an otter trawl and ring nets, and the uptake of organisms by dredges was estimated from samples collected on working hopper and pipeline dredges. ... Impacts of the dredging project on crabs, shrimp and fish could be associated with entrainment, food loss and toxicants released from sediments. Scenarios are presented that predict impacts. Suggestions for reducing impacts are given.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
The Cape Canaveral, Florida, marine ecosystem is unique. There are complex current and temperature regimes that form a faunal transition zone between Atlantic tropical and subtropical waters. This zone is rich faunistically and supports large commercial fISheries for fish, scallops, and shrimp. Canaveral is also unique because it has large numbers of sea turtles year-round, this turtle aggregation exhibiting patterned seasonal changes in numbers, size frequency, and sex ratio. Additionally, a significant portion of this turtle aggregation hibernates in the Canaveral ship channel, a phenomenon rare in marine turtle populations. The Cape Canaveral area has the largest year-round concentration of sea turtles in the United States. However, the ship channel is periodically dredged by the U.S. Army Corps of Engineers in order to keep Port Canaveral open to U.S. Navy vessels, and preliminary surveys showed that many sea turtles were incidentally killed during dredging operations. In order for the Corps of Engineers to fulfill its defense dredging responsibilities, and comply with the Endangered Species Act of 1973, an interagency Sea Turtle Task Force was formed to investigate methods of reducing turtle mortalities. This Task Force promptly implemented a sea turtle research plan to determine seasonal abundance, movement patterns, sex ratios, size frequencies, and other biological parameters necessary to help mitigate dredging conflicts in the channel. The Cape Canaveral Sea Turtle Workshop is a cooperative effort to comprehensively present research results of these important studies. I gratefully acknowledge the support of everyone involved in this Workshop, particularly the anonymous team of referees who painstakingly reviewed the manuscripts. The cover illustration was drawn by Jack C. Javech. (PDF file contains 86 pages.)
Resumo:
This profile covers life history and environmental requirements of both alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), since their distribution is overlapping and their morphology, ecological role, and environmental requirements are similar. The alewife is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life cycle stage, from Newfoundland (Winters et al. 1973) to Soutn Carolina (Berry 1964). Landlocked populations are i n the Great Lakes, Finger Lakes, and many other freshwater lakes (Bigelow and Sch roeder 1953; Scott and Crossman 1973). The blueback herring is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life stage cycle, from Nova Scotia to the St. Johns River, Florida (Hildebrand 1963)