55 resultados para Underwater robots
Resumo:
Investigation on the effects of explosive shock on marine life. Necessary that the "commercial" effects, the actual damage to commercially important stocks of fish and shellfish, be evaluated. Equally important are the "biological" effects, the immediate physical effects of shock waves on animals and the indirect effects on future stocks. Indirect effects might include the diversion of migratory stocks from an area, or actual damage to the habitat, rendering it unfit for sedentary or non-migratory native species. Interruption of the food chains in an area by destruction of forge forms or vegetation. (PDF contains 43 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
An estimation method for the three-dimensional underwater shape of tuna longlines is developed, using measurements of depth obtained from micro-bathythermographs (BTs) attached to the main line at equally spaced intervals. The shape of the main line is approximated by a model which consists of a chain of unit length lines (folding-rule model), where the junction points are placed at the observed depths. Among the infinite number of possible shapes, the most likely shape is considered to be the smoothest one that can be obtained with a numerical optimization algorithm. To validate the method, a series of experimental longline operations were conducted in the equatorial region of the eastern Pacific Ocean, using 13 or 14 micro-BTs per basket of main line. Concurrent observations of oceanographic conditions (currents and temperature structure) were obtained. The shape of the main line can be calculated at arbitrary times during operations. Shapes were consistent with the current structure. On the equator, the line was elevated significantly by the Equatorial Undercurrent. It is shown that the shape of main line depends primarily upon the vertical shear and direction of the current relative to the gear. Time sequences of calculated shapes reveals that observed periodic (1-2 hours) oscillations in depth of the gear was caused by swinging movements of the main line. The shortening rate of the main line is an important parameter for formulating the shape of the longline, and its precise measurement is desirable.
Resumo:
To understand harbor seal social and mating strategies, I examined site fidelity, seasonal abundance and distribution, herd integrity, and underwater behavior of individual harbor seals in southern Monterey Bay. Individual harbor seals (n = 444) were identified by natural markings and represented greater than 80% of an estimated 520 seals within this community. Year to year fidelity of individual harbor seals to southern Monterey Bay coastline was 84% (n = 388), and long-term associations (>2 yrs) among individuals were common (>40%). Consistent with these long-term associations, harbor seals were highly social underwater throughout the year. Underwater social behavior included three primary types: (1) visual and acoustic displays, such as vocalizing, surface splashing, and bubble-blowing; (2) playful or agonistic social behavior such as rolling, mounting, attending, and biting; and (3) signal gestures such as head-thrusting, fore-flipper scratch~ng, and growling. Frequency of these types of behavior was related to seal age, gender, season, and resource availability. Underwater behavior had a variety of functions, including promotion of learning and social development, reduction of aggression and preservation of social bonds by maintaining social hierarchy, and facilitation of mate selection during breeding season. Social behavior among adult males was significantly correlated with vocalization characteristics (r = 0.99, X2 = 37.7, p = 0.00087), indicating that seals may assess their competition based on underwater vocalization displays and adopt individual strategies for attracting females during breeding season based on social status. Individual mating strategies may include defending underwater territories, using scramble tactics, and developing social alliances. (PDF contains 105 pages)
Resumo:
The long-snouted seahorse (Hippocampus guttulatus) (Cuvier, 1829), was used to validate the pre-dictive accuracy of three progressively realistic models for estimating the realized annual fecundity of asyn-chronous, indeterminate, multiple spawners. Underwater surveys and catch data were used to estimate the duration of the reproductive season, female spawning frequency, male brooding frequency, and batch fecun-dity. The most realistic model, a generalization of the spawning fraction method, produced unbiased estimates of male brooding frequency (mean ±standard deviation [SD]=4.2 ±1.6 broods/year). Mean batch fecundity and realized annual fecundity were 213.9 (±110.9) and 903.6 (±522.4), respectively. However, females prepared significantly more clutches than the number of broods produced by males. Thus, methods that infer spawning frequency from patterns in female egg production may lead to significant overestimates of realized annual fecundity. The spawning fraction method is broadly applicable to many taxa that exhibit parental care and can be applied nondestructively to species for which conservation is a concern.
Resumo:
During the VITAL cruise in the Bay of Biscay in summer 2002, two devices for measuring the length of swimming fish were tested: 1) a mechanical crown that emitted a pair of parallel laser beams and that was mounted on the main camera and 2) an underwater auto-focus video camera. The precision and accuracy of these devices were compared and the various sources of measurement errors were estimated by repeatedly measuring fixed and mobile objects and live fish. It was found that fish mobility is the main source of error for these devices because they require that the objects to be measured are perpendicular to the field of vision. The best performance was obtained with the laser method where a video-replay of laser spots (projected on fish bodies) carrying real-time size information was used. The auto-focus system performed poorly because of a delay in obtaining focus and because of some technical problems.
Resumo:
Due to inadequacies of previous underwater towing techniques and the special needs of a recent underwater survey, a modified mania-board technique was developed. With this new technique, the diver holds on to the manta-board with one arm; consequently, the board is referred to as a single-armed manta-board (sam-board). The sam-board proved inexpensive and highly maneuverable, allowing the divers to freely collect samples or record information. Through some experimenting with the board and changing some of the variables, such as rope lengths, towing speeds, etc., a highly efficient towing method can be achieved. Preplanning and strict diving safety procedures must, however, be implemented to assure efficiency. This paper presents the materials, guidelines for board construction, equipment, and preplanning and diving safety procedures necessary for the sam-board towing operation.
Resumo:
We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.
Resumo:
Autonomous underwater vehicles (AUV’s) are increasingly used to collect physical, chemical, and biological information in the marine environment. Recent efforts include merging AUV technology with acoustic telemetry to provide information on the distribution and movements of marine fish. We compared surface vessel and AUV tracking capabilities under rigorous conditions in coastal waters near Juneau, Alaska. Tracking surveys were conducted with a REMUS 100 AUV equipped with an integrated acoustic receiver and hydrophone. The AUV was programmed to navigate along predetermined routes to detect both reference transmitters at 20–500 m depths and tagged fish and crabs in situ. Comparable boat surveys were also conducted. Transmitter depth had a major impact on tracking performance. The AUV was equally effective or better than the boat at detecting reference transmitters in shallow water, and significantly better for transmitters at deeper depths. Similar results were observed for tagged animals. Red king crab, Paralithodes camtschaticus, at moderate depths were recorded by both tracking methods, while only the AUV detected Sablefish, Anoplopoma fimbria, at depths exceeding 500 m. Strong currents and deep depths caused problems with AUV navigation, position estimation, and operational performance, but reflect problems encountered by other AUV applications that will likely diminish with future advances, enhanced methods, and increased use.