29 resultados para Tunnels support
Resumo:
A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)
Resumo:
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)
Resumo:
In the spring of 2001, NOAA’s National Marine Sanctuary Program (NMSP) and National Centers for Coastal Ocean Science (NCCOS), in consultation with the National Marine Fisheries Service (NMFS), launched a 24-month effort to define and assess biogeographic patterns of selected marine species found within and adjacent to the boundaries of three west coast National Marine Sanctuaries. These sanctuaries, Monterey Bay, Gulf of the Farallones, and Cordell Bank are conducting a joint review process to update sanctuary management plans. The management plans for these sanctuaries have not been updated for over ten years and the status of the natural resources and their management issues in and around the sanctuaries may have changed. In addition, significant accomplishments in research and resource assessments have been made within the region. Thus, it is important to incorporate new and expanding knowledge into the revised management plans for these Sanctuaries.
Resumo:
The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and conserve and manage coastal and marine resources to meet our nation’s economic, social and environmental needs (NOAA, 2004). In meeting its marine stewardship responsibilities, NOAA seeks to ensure the sustainable use of resources and balance competing uses of coastal and marine ecosystems, recognizing both their human and natural components (NOAA, 2004). Authorities for executing these responsibilities come from over 90 separate pieces of Federal legislation, each with unique requirements and responsibilities. Few of these laws explicitly mandate an ecosystem approach to management (EAM) or supporting science. However, resource managers, the science community, and increasingly, the public, are recognizing that significantly greater connectedness among the scientific disciplines is needed to support management and stewardship responsibilities (Browman and Stergiou, 2004; 2005). Neither NOAA nor any other science agency can meet the increasing demand for ecosystem science products addressing each of its mandates individually. Even if it was possible, doing so would not provide the integration necessary to solve the increasingly complex array of management issues. This focus on the integration of science and management responsibilities into an ecosystem view is one of the centerpieces of the U.S. Commission on Ocean Policy’s report (USCOP, 2004), and the Administration’s response to that report in the U.S. Ocean Action Plan (CEQ, 2004). (PDF contains 100 pages)
Resumo:
Few issues confronting coastal resource managers are as divisive or difficult to manage as regulating the construction of private recreational docks and piers associated with residential development. State resource managers face a growing population intent on living on or near the coast, coupled with an increasing desire to have immediate access to the water by private docks or piers. (PDF contains 69 pages)
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
The workshop was organized to understand and describe the livelihoods of poor people who manage aquatic resources for planning support. The purpose was to support field workers to carry out livelihood analysis and how to use this information. (PDF contains 13 pages)
Resumo:
(PDF contains 9 pages.)
Resumo:
The STREAM Initiative has been working with issues relating to livelihoods, policy and institutional development and communications throughout Asia-Pacific. Recently this has included work in India with indigenous communities supporting people to have a voice in policy making processes. There appear to be some parallels between this work and the objectives of Kimberley Aquaculture Aboriginal Corporation (KAAC) and also the Agriculture Fisheries and Forestry Australia (AFFA) Indigenous Aquaculture Unit (IAU), National Aquaculture Development Strategy for Indigenous Communities in Australia. (PDF contains 13 pages)
Resumo:
Throughout the Asia-Pacific region capture fisheries and certain less intensive forms of aquaculture can and do play a vital role in livelihoods management, food security, and health and nutrition. Knowledge and experience exist that could be more effectively used in policy for poverty alleviation. (PDF contains 89 pages)
Resumo:
The governing council of Naca has resolved to effect a shift in emphasis from aquaculture development to aquaculture for development. This will require engaging partners from a broad spectrum of government and development agencies, the nature of the information that will need to be gathered and the strategies used for disseminating information and initiating action. The vehicle for operationalising this shift is STREAM - Support to Regional Aquatic Resources Management. This report outlines the nature of the STREAM network, its relationship to NACA's vision, mission, objectives and operating principles, and how STREAM differs from previous NACA's networks. Because STREAM is different, a theoretical basis for network communication is presented along with an outline of the preliminary steps in getting the network up and running. (Pdf contains 33 pages).
Resumo:
Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)
Resumo:
Long-term hydrologic studies in the Arctic simply do not exist. Although the Arctic has been identified as an area that is extremely sensitive to climate change, continuous scientific research has been limited to the past seven years. Earlier research was spotty, of short duration, and directed at only one or two hydrologic elements. Immediate future research needs to encompass all the major hydrologic elements, including winter processes, and needs to address the problem of scaling from small to larger areas in hydrologic models. Also, an international program of cooperation between northern countries is needed to build a greater scientific base for monitoring and identifying potential changes wrought by the climate.