20 resultados para TMI SST
Resumo:
The physical environment of eastern boundary current systems is rarely uniform in time. ENSO and other perturbations produce profound anomalies in the atmosphere and ocean on interannual to decadal and century time scales. ... The objective of this paper is to describe the temporal variability in the spatial texture of the California Current system, a major eastern boundary current system off the west coast of North America, to provide a base from which to evaluate the effect of climate change - in the recent past, at present, and for the future.
Resumo:
The changes in time and location of surface temperature from a water body has an important effect on climate activities, marine biology, sea currents, salinity and other characteristics of the seas and lakes water. Traditional measurement of temperature is costly and time consumer due to its dispersion and instability. In recent years the use of satellite technology and remote sensing sciences for data acquiring and parameter and lysis of climatology and oceanography is well developed. In this research we used the NOAA’s Satellite images from its AVHRR system to compare the field surface temperature data with the satellite images information. Ten satellite images were used in this project. These images were calibrated with the field data at the exact time of satellite pass above the area. The result was a significant relation between surface temperatures from satellite data with the field work. As the relative error less than %40 between these two data is acceptable, therefore in our observation the maximum error is %21.2 that can be considered it as acceptable. In all stations the result of satellite measurements is usually less than field data that cores ponds with the global result too. As this sea has a vast latitude, therefore the different in the temperature is natural. But we know this factor is not the only cause for surface currents. The information of all satellites were images extracted by ERDAS software, and the “Surfer” software is used to plot the isotherm lines.
Resumo:
To be in compliance with the Endangered Species Act and the Marine Mammal Protection Act, the United States Department of the Navy is required to assess the potential environmental impacts of conducting at-sea training operations on sea turtles and marine mammals. Limited recent and area-specific density data of sea turtles and dolphins exist for many of the Navy’s operations areas (OPAREAs), including the Marine Corps Air Station (MCAS) Cherry Point OPAREA, which encompasses portions of Core and Pamlico Sounds, North Carolina. Aerial surveys were conducted to document the seasonal distribution and estimated density of sea turtles and dolphins within Core Sound and portions of Pamlico Sound, and coastal waters extending one mile offshore. Sea Surface Temperature (SST) data for each survey were extracted from 1.4 km/pixel resolution Advanced Very High Resolution Radiometer remote images. A total of 92 turtles and 1,625 dolphins were sighted during 41 aerial surveys, conducted from July 2004 to April 2006. In the spring (March – May; 7.9°C to 21.7°C mean SST), the majority of turtles sighted were along the coast, mainly from the northern Core Banks northward to Cape Hatteras. By the summer (June – Aug.; 25.2°C to 30.8°C mean SST), turtles were fairly evenly dispersed along the entire survey range of the coast and Pamlico Sound, with only a few sightings in Core Sound. In the autumn (Sept. – Nov.; 9.6°C to 29.6°C mean SST), the majority of turtles sighted were along the coast and in eastern Pamlico Sound; however, fewer turtles were observed along the coast than in the summer. No turtles were seen during the winter surveys (Dec. – Feb.; 7.6°C to 11.2°C mean SST). The estimated mean surface density of turtles was highest along the coast in the summer of 2005 (0.615 turtles/km², SE = 0.220). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2005 (0.016 turtles/km², SE = 0.009). The mean seasonal abundance estimates were always highest in the coastal region, except in the winter when turtles were not sighted in either region. For Pamlico Sound, surface densities were always greater in the eastern than western section. The range of mean temperatures at which turtles were sighted was 9.68°C to 30.82°C. The majority of turtles sighted were within water ≥ 11°C. Dolphins were observed within estuarine waters and along the coast year-round; however, there were some general seasonal movements. In particular, during the summer sightings decreased along the coast and dolphins were distributed throughout Core and Pamlico Sounds, while in the winter the majority of dolphins were located along the coast and in southeastern Pamlico Sound. Although relative numbers changed seasonally between these areas, the estimated mean surface density of dolphins was highest along the coast in the spring of 2006 (9.564 dolphins/km², SE = 5.571). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2004 (0.192 dolphins/km², SE = 0.066). The estimated mean surface density of dolphins was lowest along the coast in the summer of 2004 (0.461 dolphins/km², SE = 0.294). The estimated mean surface density of dolphins was lowest in Core and Pamlico Sounds in the summer of 2005 (0.024 dolphins/km², SE = 0.011). In Pamlico Sound, estimated surface densities were greater in the eastern section except in the autumn. Dolphins were sighted throughout the entire range of mean SST (7.60°C to 30.82°C), with a tendency towards fewer dolphins sighted as water temperatures increased. Based on the findings of this study, sea turtles are most likely to be encountered within the OPAREAs when SST is ≥ 11°C. Since sea turtle distributions are generally limited by water temperature, knowing the SST of a given area is a useful predictor of sea turtle presence. Since dolphins were observed within estuarine waters year-round and throughout the entire range of mean SST’s, they likely could be encountered in the OPAREAs any time of the year. Although our findings indicated the greatest number of dolphins to be present in the winter and the least in the summer, their movements also may be related to other factors such as the availability of prey. (PDF contains 28 pages)
Resumo:
ENGLISH: The abundance of skipjack larvae in the central and western Pacific approximately doubled for every 1°C increase in sea-surface temperature (SST) from 23°C to a maximum of about 29°C, and then usually decreased with further increases in SST. Skipjack larvae are scarce in the eastern Pacific Ocean (EPO), so most skipjack recruits and adults in this area are believed to have originated in the central and, possibly, the western Pacific. The catch per unit of effort (CPUE), in short tons per day's fishing, and the catch rate, in number of fish per day's fishing, are estimates of apparent abundance in a fishery. The logarithm of the annual CPUE for skipjack for international baitboats in the EPO for the 1934-1960 period was positively correlated with SST in the spawning area in the central Pacific 18 months earlier (r2 0.31), during the July-June period when most of the recruits in each cohort were presumed to have been spawned. Adequate data for other environmental variables were not available for testing with the baitboat data. The other environmental variables available and selected for testing for correlation with estimates of skipjack abundance for purse seiners for the 1961-1984 period and the reasons for their selection are as follows. 1)Wind-mixing index (WMI). The degree of mixing in the upper layers of the ocean is proportional to the cube of the wind speed, called WMI. The degree of mixing in the spawning areas of the central and the western Pacific may affect the concentration of organisms that skipjack larvae feed upon, thereby influencing their survival, and ultimately determining cohort strength and the number of recruits to the eastern Pacific fishery. 2) SST in the fishing areas at the time of fishing (SST). The CPUE for yellowfin tuna has been shown to be inversely related to SST in the fishing areas, and there are indications that skipjack CPUE is lower during EI Nino events when SST is higher than normal. 3) North-south SST gradient across the thermal front off the Gulf of Guayaquil. This is a measure of the degree of upwelling and nutrient enrichment of the upper waters south of the front and ultimately of the production of food for tunas. 4) Speed of the North Equatorial Countercurrent (NECC). Young skipjack may migrate from the central Pacific to the EPO in the eastward flowing NECC; if so, the number of recruits might be affected by variations in the speed of the current. The logarithm of the annual catch rate of skipjack recruits by international purse seiners in the EPO for the 1961-1984 period was positively correlated with SST in the spawning area of the central Pacific 18 months earlier (r2 = 0.21),and inversely correlated with WMI in the spawning area 18 months earlier (r2 0.46). The logarithm of CPUE for purse seiners in the area off the Gulf of Guayaquil was not correlated with SST in the spawning area 18 months earlier, but was inversely correlated with WMI in the spawning area 18 months earlier (r2 = 0.19), and inversely correlated with the north-south SST gradient in the fishing area at the time of fishing (r2 0.32). Neither of these estimates of apparent abundance from purse seiners were correlated with SST in the fishing areas, or with the speed of the NECC at earlier times. SPANISH: La abundancia de larvas de barrilete en el Pacífico central y occidental se multiplicó por dos, aproximadamente, por cada aumento de 1°Cen la temperatura de la superficie del mar (TSM) entre 23°C y un máximo de unos 29°C, y luego generalmente disminuyó con más aumentos en la TSM. Las larvas de barrilete son escasas en el Océano Pacífico oriental (OPO), y por lo tanto se cree que la mayoría de los reclutas y adultos en esta zona surgieron del Pacífico central, y posiblemente también del Pacífico occidental. La captura por unidad de esfuerzo (CPUE), en toneladas cortas por día de pesca, y la tasa de captura, en número de peces por día de pesca, son estimaciones de la abundancia aparente en una pesquería. El logaritmo de la CPUE anual de barrilete lograda por barcos de carnada en el OPO en el período 1934-1960 se correlacionó positivamente con la TSM en la zona de desove en el Pacífico central de 18 meses antes (r2 = 0.31), durante el período de junio-julio en el cual se cree que nació la mayoría de los reclutas en cada cohorte. No se dispuso de datos suficientes sobre otras variables ambientales para comprobarlos con los datos de los barcos de carnada. Las demás variables ambientales disponibles y seleccionadas para someterlas a pruebas de correlación con las estimaciones de la abundancia del barrilete de barcos cerqueros en el período 1961-1984, y las razones por su selección, son las siguientes: 1) Indice de mezcla por el viento (IMV). El grado de mezcla en las capas superiores del océano es proporcional al cubo de la velocidad del viento, llamado IMV. Es posible que el grado de mezcla en las zonas de desove del Pacífico central y occidental afecte la concentración de los organismos que alimentan a las larvas del barrilete, afectando así la supervivencia de éstas, y finalmente determinando el tamaño de las cohortes y el número de reclutas a la pesquería del OPO. 2) TSM en la zona de pesca al realizarse la pesca (TSM). Se ha mostrado que la relación de la CPUE del atún aleta amarilla a la TSM en la zona de pesca es inversa, y existen indicaciones que la CPUE de barrilete es inferior durante eventos del Niño, cuando las TSM son superiores a lo normal. 3) Gradiente norte-sur de las TSM a través del frente térmico frente al Golfo de Guayaquil. Esto es una medida del grado de afloramiento y enriquecimiento nutritivo del nivel superior de las aguas al sur de dicho frente, y finalmente de la producción de alimento para los atunes. 4) La velocidad de la Contracorriente Ecuatorial del Norte (CCEN). Es posible que los bariletes juveniles migren del Pacífico central al Pacífico oriental en la CCEN, que fluye hacia el este; de ser así, es posible que la cantidad de reclutas se vea afectada por variaciones en la velocidad de la corriente. El logaritmo de la tasa anual de captura de reclutas de barrilete por cerqueros de varias banderas en el OPO en el período 1961-1964 estuvo correlacionado de forma positiva con las TSM en la zona de desove del Pacífico central de 18meses antes (r2 0.21),y de forma inversa con el IMV de la zona de desove de 18 meses antes (r2 0.46). El logaritmo de la CPUE de los cerqueros en la zona frente al Golfo de Guayaquil no estuvo correlacionado con las TSM en la zona de desove de 18 meses antes, pero sí estuvo correlacionado de forma inversa con el IMV en la zona de desove de 18 meses antes (r2 0.19),y con el gradiente norte-sur de las TSM en la zona de pesca al realizarse la pesca (r2 0.32). Ninguna de estas estimaciones de abundancia aparente provenientes de barcos cerqueros estuvo correlacionada con las TSM en las zonas de pesca o con la velocidad de la CCEN en épocas anteriores. (PDF contains 140 pages.)
Resumo:
Fishery catch data on yellowfin tuna (Thunnus albacares) were examined to study the effects of El Niño events between 1990 and 1999 for an area in the northeastern tropical Pacific (18−24°N, 112−104°W). The data were extracted from a database of logbook records from the Mexican tuna purse-seine f leet. Latitudinal distribution of the catches increased from south to north for the 10-year period. Highest catches and effort were concentrated between 22°N and 23°N. This area accumulated 48% of the total catch over the 10year period. It was strongly correlated with El Niño-Southern Oscillation (ENSO) events. At least two periods of exceptionally high catches occurred following El Niño events in 1991 and 1997. Peaks of catches were triggered by the arrival of positive anomalies of sea surface temperature (SST) to the area. A delay of two to four months was observed between the occurrence of maximum SST anomalies at the equator and peaks of catch. Prior to these two events, negative SST anomalies were the dominant feature in the study area and catch was extremely low. This trend of negative SST anomalies with low catches followed by positive SST anomalies and high catches may be attributed to northward yellowfin tuna migration patterns driven by El Niño forcing, a result that contrasts with the known behavior of decreasing relative abundance of these tuna after El Niño events in the eastern Pacific. However, this decrease in relative abundance may be the result of a local or subregional effect.
Resumo:
The California market squid (Loligo opalescens) has been harvested since the 1860s and it has become the largest fishery in California in terms of tonnage and dollars since 1993. The fishery began in Monterey Bay and then shifted to southern California, where effort has increased steadily since 1983. The California Department of Fish and Game (CDFG) collects information on landings of squid, including tonnage, location, and date of capture. We compared landings data gathered by CDFG with sea surface temperature (SST), upwelling index (UI), the southern oscillation index (SOI), and their respective anomalies. We found that the squid fishery in Monterey Bay expends twice the effort of that in southern California. Squid landings decreased substantially following large El Niño events in 1982−83 and 1997−98, but not following the smaller El Niño events of 1987 and 1992. Spectral analysis revealed autocorrelation at annual and 4.5-year intervals (similar to the time period between El Niño cycles). But this analysis did not reveal any fortnightly or monthly spawning peaks, thus squid spawning did not correlate with tides. A paralarvae density index (PDI) for February correlated well with catch per unit of effort (CPUE) for the following November recruitment of adults to the spawning grounds. This stock– recruitment analysis was significant for 2000−03 (CPUE=8.42+0.41PDI, adjusted coefficient of determination, r2=0.978, P=0.0074). Surveys of squid paralarvae explained 97.8% of the variance for catches of adult squid nine months later. The regression of CPUE on PDI could be used to manage the fishery. Catch limits for the fishery could be set on the basis of paralarvae abundance surveyed nine months earlier.
Resumo:
The interaction of ocean climate and growth conditions during the postsmolt phase is emerging as the primary hypothesis to explain patterns of adult recruitment for individual stocks and stock complexes of Atlantic salmon (Salmo salar). Friedland et al. (1993) first reported that contrast in sea surface temperature (SST) conditions during spring appeared to be related to recruitment of the European stock complex. This hypothesis was further supported by the relationship between cohort specific patterns of recruitment for two index stocks and regional scale SST (Friedland et al., 1998). One of the index stocks, the North Esk of Scotland, was shown to have a pattern of postsmolt growth that was positively correlated with survival, indicating that growth during the postsmolt year controls survival and recruitment (Friedland et al., 2000). A similar scenario is emerging for the North American stock complex where contrast in ocean conditions during spring in the postsmolt migration corridors was associated with the recruitment pattern of the stock complex (Friedland et al., 2003a, 2003b). The accumulation of additional data on the postsmolt growth response of both stock complexes will contribute to a better understanding of the recruitment process in Atlantic salmon.
Resumo:
Twenty-nine verified records of white sharks, Carcharodon carcharias, from British Columbia and Alaska waters (1961–2004) are presented. Record locations ranged from lat. 48°48ʹN to lat. 60°17ʹN, including the northernmost occurrence of a white shark and the first report of this species from the central Bering Sea. White sharks recorded from the study area were generally large, with 95% falling between 3.8 and 5.4 m in length. Mature white sharks of both sexes occur in British Columbia and Alaska waters, although they do not necessarily reproduce there. White sharks actively feed in the study area; their diet is similar to that reported for this species from Washington and northern California waters. Sea surface temperature (SST) concurrent with white shark records from the study area ranged from 16°C to between 6.4°C and 5.0°C, extending the lower extreme of the range of SST from which this species has been previously reported. White shark strandings are rarely reported, yet 16 (55%) of the records in this study are of beached animals; strandings generally occurred later in the year and at lower latitudes than nonstrandings. No significant correlation was found between white shark records in the study area and El Niño events and no records occurred during La Niña events. The data presented here indicate that white sharks are more abundant in the cold waters of British Columbia and Alaska than previous records suggest.
Resumo:
After an unusually strong and persistent pattern of atmospheric circulation over the United State[s] in Fall 1985, it became quite changeable (although high amplitude anomalies still prevailed). Following a fall that was cold in the West and warm in the East with heavy precipitation, a high pressure ridge set in over the West during December, with generally light precipitation over most of the country. Throughout the winter, the central North Pacific was very active, with large negative atmospheric pressure anomalies centered at about 45°N, l60°W. This activity may have been encouraged by an enhanced meridional eastern North Pacific sea surface temperature (SST) gradient, with positive SST anomalies in the subtropics and negative anomalies in midlatitudes. However, in January, the western high pressure ridge remained strong and temperatures were remarkably warm, increasing the threat of drought in California after the two previous dry winters. However, in February, storms from a greatly expanded and southerly displaced Aleutian Low broke into the West Coast. An unusual siege from February 11 to February 20 flooded central and northern California, with very heavy precipitation and record to near-record runoff. Upwards of 50 percent of annual average precipitation fell on locations from the upper San Joaquin to the Feather River drainage basins, and the largest flow since observations began in the early 1900's was recorded on the Sacramento River at Sacramento. The atmospheric pattern that was responsible for this remarkable stormy spell developed when the western high pressure retrograded to the northwest into the Aleutians, accompanied by the strengthened and southerly extended storm tract that moved into California. Although exact details vary from case to case, this episode displayed meteorological conditions similar to those in several other historical California winter flood events. These included a long duration of very strong westerly to southwesterly winds over a long subtropical fetch into California. Much of the precipitation during this series of storms was orographically induced by the moisture laden flow rising over the Sierra ranges. Due to the warm air mass, snow levels were relatively high (about 7500 feet) during the heaviest precipitation, resulting in copious runoff.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Stable isotope data obtained from snow and ice cores retrieved from an altitude of 5340m on Mt. Logan (60°30'N; 140°36'W) indicate that "isotopic seasons" are not generally in phase with calendar seasons. The former are phase lagged with respect to the latter by up to several months and appear to be correlated with SST'S and ocean heat transfer curves and/or the position of the Aleutian low rather than with air temperature or the temperature difference between the ocean surface and the core site.
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
We have applied a number of objective statistical techniques to define homogeneous climatic regions for the Pacific Ocean, using COADS (Woodruff et al 1987) monthly sea surface temperature (SST) for 1950-1989 as the key variable. The basic data comprised all global 4°x4° latitude/longitude boxes with enough data available to yield reliable long-term means of monthly mean SST. An R-mode principal components analysis of these data, following a technique first used by Stidd (1967), yields information about harmonics of the annual cycles of SST. We used the spatial coefficients (one for each 4-degree box and eigenvector) as input to a K-means cluster analysis to classify the gridbox SST data into 34 global regions, in which 20 comprise the Pacific and Indian oceans. Seasonal time series were then produced for each of these regions. For comparison purposes, the variance spectrum of each regional anomaly time series was calculated. Most of the significant spectral peaks occur near the biennial (2.1-2.2 years) and ENSO (~3-6 years) time scales in the tropical regions. Decadal scale fluctuations are important in the mid-latitude ocean regions.
Resumo:
This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW.
Resumo:
As sea turtles migrate along the Atlantic coast of the USA, their incidental capture in fisheries is a significant source of mortality. Because distribution of marine cheloniid turtles appears to be related, in part, to sea surface temperature (SST), the ability to predict water temperature over the continental shelf could be useful in minimizing turtle–fishery interactions. We analyzed 10 yr of advanced very high resolution radiometer (AVHRR) SST imagery to estimate the proportion of 18 spatial zones, nearshore and offshore of Hatteras, North Carolina, USA (35° N), to north of Cape Sable, Nova Scotia (44° N), at temperatures >10 to 15°C, by week. Detailed examples for 11°C, the temperature employed by some management actions in the study area, and for 14°C, the lowest temperature at which turtles were sighted by some studies in the area, demonstrate a predictable pattern of rapid warming in March and April, followed by rapid cooling in October and November, with nearshore waters warming more rapidly than those offshore. Of those loggerhead turtles Caretta caretta that stranded, were sighted, or were incidentally captured between Cape Hatteras, North Carolina, and Cape Cod, Massachusetts, those at lower latitudes occurred when 25% or more of the area reached a water temperature of 11°C, while those in the northern zones did not occur until 50% or more of the area had reached a water temperature of 14°C. This analysis provides a means of predicting marine cheloniid turtle presence, which can be helpful in regulating fisheries that seasonally interact with turtles.
Resumo:
Annual mean fork length (FL) of the Pacific stock of chub mackerel (Scomber japonicus) was examined for the period of 1970–97. Fork length at age 0 (6 months old) was negatively correlated with year-class strength which fluctuated between 0.2 and 14 billion in number for age-0 fish. Total stock biomass was correlated with FL at age but was not a significant factor. Sea surface temperature (SST) between 38–40°N and 141–143°E during April–June was also negatively correlated with FL at age 0. A modified von Bertalanffy growth model that incorporated the effects of population density and SST on growth was well fitted to the observed FL at ages. The relative FL at age 0 for any given year class was maintained throughout the life span. The variability in size at age in the Pacific stock of chub mackerel is largely attributable to growth during the first six months after hatching.