67 resultados para Stereotype Threat
Resumo:
Trace metals constitute a major form of water pollutant that can adversely affect fish production. The potentially toxic metals have been identified as lead, zinc, copper, arsenic, antimony, mercury beryllium, barium, cadmium, chromium, nickel, selenium among others. Preliminary laboratory studies have been directed to the determination of traces of lead in the aquatic biota and its toxicity. There are indications that the levels reported in effluents from some of the industries may be above the tolerant limits of local fish species and organisms that make up their food. Metal pollution could become a serious problem to freshwater fisheries in the future as a result of increasing urbanization and industrialization, unless efforts are made to prevent it
Resumo:
Nigeria, the country of many rivers is also rich in lakes, and wetlands, sustainable and wise use of these inland aquatic ecosystem and water resources has become a matter of widespread and intense concern. Unhealthy freshwater ecosystems and seriously diminishing and unequal availability of quality freshwater call for high quality limnological research and expertise to underpin the enhancement of sustainable fisheries and aquaculture development.In every regard of national health, agriculture and economics, the continued over exploitation and misuse of finite freshwater resources is directly causal to the progressively deteriorating fish production and general standard of living.The integration of basic understanding of inland ecosystems with applied problems and their solutions should be of fundamental concern to all stakeholders in our freshwater resource. This is a basic element in creating an attractive and security ensured economic for investment in fisheries development, including aquaculture. This is the focus of this paper
Resumo:
The study assessed qualitatively the threat status of all nigerian freshwater fishes using such criteria as rarity, size at maturity, mode of reproduction, human population density, habitat degradation, pollution and range of each species among others. The biology of 48% (129n) of nigerian freshwater species is not well known. Of the 266 known freshwater fishes, 47 species represented 17% are critically endangered, 15 (5%) are endangered , 8(3%), are vulnerable while 23(8%) are near threatened. The paper suggests increased basic knowledge of threatened species and conservation policy along three lines public awareness, legislation and creation of national parks, aquaria and reserves as measures needed to ensure the conservation of the fishes
Resumo:
This brief article summarizes the ecological role of non-salmonid fishes in Scottish fresh waters. Most government-sponsored research has focused on the ecologically valuable salmonids in this area, yet non-salmonid species are widely distributed in Scotland and play an important ecological role in freshwater ecosystems. The fish fauna of Scotland differs from other parts of the British Isles by being more impoverished following the end of the last Ice Age, ca. 10 000 years ago.
Resumo:
The general decline of the endangered freshwater pearl mussel Margaritifera margaritifera (L.) throughout its holarctic range is well documented. Scotland is considered to be a stronghold of margaritifera, containing approximately half of the world's known remaining viable populations. However, even here the majority of populations have declined and many have disappeared completely. This article provides an overview of the freshwater pearl mussel life-cycle and the life-cycle of salmonids which are the host fish during the freshwater mussels short parasitic larval phase. The authors highlight the potential implications of the decline of salmonids for freshwater populations in Scotland.
Resumo:
Practically all water for municipal and industrial use in the Fernandina area is supplied by artesian wells. In recent years, the use of artesian water in the area has increased to meet the needs of expanding industry and increasing population. The total industrial and municipal pumpage has increased from approximately 35 million gallons per day in 1941 to approximately 50 million gallons per day in 1959. Correlated with the increase in water use is the constant decline in the artesian pressure in the area. In many other areas in Florida, such a decline in artesian pressure has resulted in salt-water intrusion into the fresh-water supply.An intrusion of salt water in the Fernandina area would contaminate the existing fresh-water supply and would result in a hardship for the population and seriously injure the economy. Recognizing the threat to the fresh-water supplies of this area, the U. S. Geological Survey in cooperation with the Florida Geological Surveymade a reconnaissance to determineif there has been any intrusion of salt water into the fresh-water supply or if there is any danger of future intrusion. (PDF contains 28 pages.)
Resumo:
Four methods to control the smooth cordgrass Spartina (Spartina alterniflora) and the footwear worn by treatment personnelat several sites in Willapa Bay, Washington were evaluatedto determine the non-target impacts to eelgrass (Zostera japonica). Clone-sized infestations of Spartina were treated bymowing or a single hand-spray application of Rodeo® formulatedat 480 g L-1acid equivalence (ae) of the isopropylaminesalt of glyphosate (Monsanto Agricultural Co., St. Louis, MO;currently Dow AgroSciences, Indianapolis, IN) with the nonionic surfactant LI 700® (2% v/v) or a combination of mowing and hand spraying. An aerial application of Rodeo® with X-77 Spreader® (0.13% v/v) to a 2-ha meadow was also investigated. Monitoring consisted of measuring eelgrass shoot densities and percent cover pre-treatment and 1-yr post-treatment. Impacts to eelgrass adjacent to treated clones were determined 1 m from the clones and compared to a control 5-m away. Impacts from footwear were assessed at 5 equidistant intervals along a 10-m transect on mudflat and an untreated control transect at each of the three clone treatment sites. Impacts from the aerial application were determined by comparing shoot densities and percent cover 1, 3 and 10 m from the edge of the treated Spartina meadow to that at comparable distances from an untreated meadow. Methods utilized to control Spartina clones did not impact surrounding eelgrass at two of three sites. Decreases in shoot densities observed at the third site were consistent across treatments. Most impacts to eelgrass from the footwear worn by treatment personnel were negligible and those that were significant were limited to soft mud substrate. The aerial application of the herbicide was associated with reductions in eelgrass (shoot density and percent cover) at two of the three sampling distances, but reductions on the control plot were greater. We conclude that the unchecked spread of Spartina is a far greater threat to the survival and health of eelgrass than that from any of the control measures we studied. The basis for evaluating control measures for Spartina should be efficacy and logistical constraints and not impacts to eelgrass. PDF is 7 pages.
Resumo:
The most critical long-term threat to the continued health of the Chesapeake Bay is the addition of excess nutrients to the estuarine waters. Other problems, such as Kepone and the disappearance of aquatic vegetation (which is possibly linked with nutrient loading), may steal our attention for short periods,but these difficulties will, hopefully, recede in due time. The projected growth of population in the near environs of the Bay, however, indicates that,as a problem, eutrophication will probably continue well into the next century
Resumo:
Editorial An increasingly secure future for wastewater-fed aquaculture in Kolkata, India? by Peter Edwards. First culture-based fisheries growth cycle in Lao PDR is overwhelmingly encouraging, by Sena De Silva. Revival of abandoned shrimp farms in Krishna District of Andhra Pradesh, by National Centre for Sustainable Aquaculture (NaCSA). Growth of forward and backward industries linked with aquaculture in Kolleru Lake area, Andhra Pradesh, India, by A. K. Roy, G. S. Saha, P. Kumaraiah and N. Sarangi Effective marketing strategies for economic viability of prawn farming in Kuttanad, India, by Ranjeet K. and B. Madhusoodana Kurup. Applications of nutritional biotechnology in aquaculture, by S.D. Singh, S.K. Nayak, M. Sekar and B.K. Behera. Some technical and management aspects of catfish hatcheries in Hong Ngu district, Dong Thap province, Vietnam, by H. P. Hung, N. T. T. An, N. V. Trieu, D. T. Yen, U. Na-Nakorn, Thuy T. T. Nguyen. Nodavirus: An emerging threat to freshwater prawn farming, by Biju Sam Kamalam, J., Saravanan, S. and Ajith Stalin, J.L. Asia-Pacific Marine Finfish Aquaculture Network Magazine: Asian seabass farming: Brainstorming workshop and training in India. Comparative study for broodstock management of grey mullet (Mugil cephalus L.) in cages and earthen ponds with hormone treatment, by Nani Gopal Das, Md. Shahadat Hossain, Sushanta Bhattacharjee and Prabal Barua. Cultivation of gilthead sea bream (Sparus auratus L.) in low saline inland water of the southern part of Israel desert, by Samuel Appelbaum and A. Jesu Arockia Raj. Mariculture development opportunities in SE Sulawesi, Indonesia, by La Ode M. Aslan, Hotman Hutauruk, Armen Zulham,Irwan Effendy, Mhummaed Atid, Michael Phillips, Lars Olsen, Brendan Larkin, Sena S De Silva, Geoff Gooley. Improved hatchery and grow-out technology for marine finfish. NACA Newsletter
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
Hurricane Isabel made landfall as a Category 2 Hurricane on 18 September 2003, on the North Carolina Outer Banks between Cape Lookout and Cape Hatteras, then coursed northwestward through Pamlico Sound and west of Chesapeake Bay where it downgraded to a tropical storm. Wind damage on the west and southwest shores of Pamlico Sound and the western shore of Chesapeake Bay was moderate, but major damage resulted from the storm tide. The NOAA, National Ocean Service, National Centers for Coastal Ocean Sciences, Center for Coastal Fisheries and Habitat Research at Beaufort, North Carolina and the Center for Coastal Environmental Health and Biomedical Research Branch at Oxford, Maryland have hurricane preparedness plans in place. These plans call for tropical storms and hurricanes to be tracked carefully through NOAA National Weather Service (NWS) watches, warnings, and advisories. When a hurricane watch changes to a hurricane warning for the areas of Beaufort or Oxford, documented hurricane preparation plans are activated. Isabel exacted some wind damage at both Beaufort and Oxford. Storm tide caused damage at Oxford, where area-wide flooding isolated the laboratory for many hours. Storm tide also caused damage at Beaufort. Because of their geographic locations on or near the open ocean (Beaufort) or on or near large estuaries (Beaufort and Oxford), storm tide poses a major threat to these NOAA facilities and the safety of federal employees. Damage from storm surge and windblown water depends on the track and intensity of a storm. One tool used to predict storm surge is the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model of the NWS, which provides valuable surge forecasts that aid in hurricane preparation.
Resumo:
Inputs of toxic chemicals provide one of the major types of anthropogenic stress threatening our Nation's coastal and estuarine waters. To assess this threat, the National Oceanic and Atmospheric Administration's (NOAA’s) National Status and Trends (NS&T) Program Mussel Watch Project monitors the concentrations of more than 70 toxic chemicals in sediments and on the whole soft-parts of mussels and oysters at over 300 sites around the U.S. Twenty of the 25 designated areas that comprise NOAA's National Estuarine Research Reserve System (NERRS) have one or more Mussel Watch monitoring sites. Trace elements and organic contaminants were quantified including As, Ag, Cd, Cu, Hg, Ni, Pb, Zn, ΣPCBs, ΣPAHs, DDT and its metabolites, and butyltins. The Mussel Watch sites located in or near the 20 Reserves provide for both status and trends. Generally the Reserves have trace element and organic contaminant concentrations that are at or below the median concentration determined for all NS&T Mussel Watch monitoring data. Trends were derived using the Spearman-rank correlation coefficient. It was possible to determine if trends exist for sites at which six or more years of data are available. Generally no trends were found for trace elements but when trends were found they were usually decreasing. The same general conclusion holds for organic contaminants but more decreasing trends were found than for trace elements. The greatest number of decreasing trends were found for tributyltin and its metabolites. (PDF contains 203 pages)