22 resultados para Schule, Frederick W.
Resumo:
The Floridan aquifer was found to be principal source of ground water in the area, containing artesian water in the northern part of Columbia County, and being recharged in the southern part of the county. A few wells in the northern part of the county tap water present in sediments that lie above the Floridan aquifer. These shallow waters are generally high in iron and tannic acid. The details on the geology and hydrology necessary to conserve and utilize the water available to the residents of Columbia County are presented in this study. (PDF contains 86 pages)
Resumo:
Future water needs in southern Florida call for an increase in the storage capacity of Lake Okeechobee. Seepage from the lake is expected to increase as a result of raising the lake level. Data concerning the occurrence and amounts of seepage are needed for the design and operation of flood-control works which will remove excess water from the rich agricultural lands along the southern shore. Intensive studies at five sites along the southern shore of Lake Okeechobee between the Caloosahatchee Canal and the St. Lucie Canal indicate that seepage occurs chiefly through beds of shell and limestone which underlie the Hoover Dike at shallow depth. Seepage rates at the five sites range from about 0.1 to 0.9 cfs per mile per foot of head across the dike. Seepage beneath the 50-mile length of dike should increase from about 22 to 50 cfs if the average stage of the lake is raised from 14 to 16.5 feet. Seepage is greatest between Moore Haven and Clewiston, where deep borrows have been excavated on the landward and lakeward sides of the dike. Most of the seepage from the lake can be controlled by properly spaced toe ditches which would intercept the seepage and return it to the lake. (PDF contains 108 pages.)
Resumo:
We describe the food habits of the Sowerby’s beaked whale (Mesoplodon bidens) from observations of 10 individuals taken as bycatch in the pelagic drift gillnet fishery for Swordfish (Xiphias gladius) in the western North Atlantic and 1 stranded individual from Kennebunk, Maine. The stomachs of 8 bycaught whales were intact and contained prey. The diet of these 8 whales was dominated by meso- and benthopelagic fishes that composed 98.5% of the prey items found in their stomachs and cephalopods that accounted for only 1.5% of the number of prey. Otoliths and jaws representing at least 31 fish taxa from 15 families were present in the stomach contents. Fishes, primarily from the families Moridae (37.9% of prey), Myctophidae (22.9%), Macrouridae (11.2%), and Phycidae (7.2%), were present in all 8 stomachs. Most prey were from 5 fish taxa: Shortbeard Codling (Laemonema barbatulum) accounted for 35.3% of otoliths, Cocco’s Lanternfish (Lobianchia gemellarii) contributed 12.9%, Marlin-spike (Nezumia bairdii) composed 10.8%, lanternfishes (Lampanyctus spp.) accounted for 8.4%; and Longfin Hake (Phycis chesteri) contributed 6.7%. The mean number of otoliths per stomach was 1196 (range: 327–3452). Most of the fish prey found in the stomachs was quite small, ranging in length from 4.0 to 27.7 cm. We conclude that the Sowerby’s beaked whales that we examined in this study fed on large numbers of relatively small meso- and benthopelagic fishes that are abundant along the slope and shelf break of the western North Atlantic.
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
Bi-weekly phytoplankton samples were collected at 0, 10, and 20 m and enumerated by the Utermöhl sedimentation technique; 14C productivity measurements at 10 m, oblique zooplankton tows, and routine hydrographic observations were also made. Northerly winds induce upwelling during December-April, followed by a rainy season; a slight resurgence in upwelling may occur during July and/or August. Annual variations in upwelling intensity and rainfall occur. During upwelling, the upper 50 m, about 30 per cent of the total volume of the Gulf of Panama, is replaced with water 5 to 10 C colder than the more stratified, turbid and nutrient impoverished watermass present during the rainy season. The mean annual runoff accompanying an average annual precipitation of 2731 mm is estimated to equal a layer of fresh water 3.2 m thick. About 10 per cent of the phytoplankton phosphate and inorganic nitrogen requirements during the rainy season are accreted. (PDF contains 260 pages.)
Resumo:
Morphological observations are given for Colpodella pugnax Cienk., Protomonas amyli Cienk., Protomonas spirogyrae Borzi and Protomonas huxleyi Haeckel.
Resumo:
The standing stock of chlorophyll, the quantities of copepods collected with a 30 liter Niskin bottle and the standing stock of zooplankton collected with a 'Bongo' net were measured from 0 to 200 m depth during a cruise along 10' W from 1' N to 12' S. These parameters are correlated to hydrological conditions measured simultaneously. 6 zonal areas have been delimited and described; the north equatorial convergence, the northern flow of the south equatorial counter-current, the trade winds drift, the south equatorial counter-current and the Benguela's drift.
Resumo:
The Philippine Expedition of 1907-10 was the longest and most extensive assignment of the Albatross's 39-year career. It came about because the United States had acquired the Philippines following the Spanish-American War of 1898 and the bloody Philippine Insurection of 1899-1902. The purpose of the expedition was to surbey and assess the aquatic resources of the Philippine Islands. Dr. Hugh M. Smith, the Deputy Commissioner of the U.S. Bureau of Fisheries, was the Director of the Expedition. Other scientific participants were Frederick M. Chamberlain, Lewis Radcliffe, Paul Bartsch, Harry C. Fasset, Clarence Wells, Albert Burrows, Alvin Seale, and Roy Chapman Andrews. The expedition consisted of a series of cruises, each beginning and ending in Manila and exploring a different part of the island group. In addition to the Philippines proper, the ship also explored parts of the Dutch East Indies and areas around Hong Kong and Taiwan. The expedition returned great quantities of fish and invertebrate speciments as well as hydrographic and fisheries data; most of the material was eventually deposited in the Smithsonian Institution's National Museum of Natural History. The fisehs were formally accessioned into the museum in 1922 and fell under the car of Barton A. Bean, Assistant Curator of Fishes, who then recruited Henry W. Fowler to work up the material. Fowler completed his studies of the entire collection, but only part of it was ever published, due in part to the economic constraints caused by the Depression. The material from the Philippine Expedition constituted the largest single accession of fishes ever received by the museum. These speciments are in good condition today and are still being used in scientific research.
Resumo:
This is the episodic variations in stream water chemistry associated with acid rainfall and run-off and the effect on aquatic ecosystems, with particular reference to fish populations in North West England produced by the North West Water Authority in 1985. This report looks at the biological, physical and chemical information collected over a five year period from over 100 sites on upland streams in the North West Region of which drained rocks of low buffering capacity. In both Lake District and South Pennine sites striking differences were found between the composition of invertebrate communities inhabiting acid-stressed and less acid-stressed streams. Electric fishing surveys showed that acidic streams (geometric mean pH <5.5) generally had abnormally low densities of salmonids ( < 0 .2m2) and that 0+ fish were very few or absent. The latter indicates recruitment failure. Salmon were more sensitive than trout to low pH.