17 resultados para SATURATION
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)
Resumo:
The largely sedentary behavior of many fishes on coral reefs is well established. Information on the movement behavior of individual fish, over fine temporal and spatial scales, however, continues to be limited. It is precisely this type of information that is critical for evaluating the success of marine reserves designed for the conservation and/or management of vagile fishes. In this pilot study we surgically-tagged eight hogfish (Lachnolaimus maximus Walbaum 1792) with coded-acoustic transmitters inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary. Our primary objective was to characterize the movement of L. maximus across Conch Reef in the vicinity of the reserve. All fish were captured, surgically-tagged and released in situ during a saturation mission to the Aquarius Undersea Laboratory, which is located in the center of the reserve. Movement of tagged L. maximus was recorded for up to 95 days by three acoustic receivers deployed on the seafloor. Results showed clear diel patterns in L. maximus activity and regular movement among the receivers was recorded for seven of the eight tagged fish. Fidelity of tagged fish to the area of release was high when calculated at the scale of days, while within-day fidelity was comparatively low when calculated at the scale of hours. While the number of fish departures from the array also varied, the majority of departures for seven of the eight fish did not exceed 1-hr (with the exception of one 47-day departure), suggesting that when departures occurred, the fish did not travel far. Future efforts will significantly expand the number of receivers at Conch Reef such that fish movement behavior relative to the reserve boundaries can be quantified with increased temporal and spatial resolution. (PDF contains 22 pages.)
Resumo:
ENGLISH: Near surface nutrient distributions in the eastern tropical Pacific Ocean, using data from the EASTROPAC Expedition of 1967-68 and pre~EASTROPAC data, are described. Nutrient concentrations were maximal along the equator, in the Peru Current and its offshore extension, and in the Costa Rica Dome and westward tensions of this feature. Nutrient-poor water was found north of the equator well offshore. In this water nitrate was often undetectable (<0.1 µg-at/liter) at the surface, but phosphate and silicic acid concentrations were moderate. Enrichment experiments showed that nitrogen was the primary limiting nutrient in poor water even though large amounts of organic N were found. Half saturation constants (K s ) were determined for ammonium-supported phytoplankton growth. These data were used to calculate near-surface primary productivity values which compared favorably with 14C values. Assimilation ratio measurements indicated that algae were not extremely nitrogen-deficient. Laboratory-determined K, values for phosphate and silicic acid indicated that these nutrients were rarely limiting. In rich water, chlorophyll levels were less than expected from nutrient levels, and this anomaly may be related to limitation by nutrients other than nitrogen (N), phosphorus (P), or silicon (Si), or to grazing. SPANISH: Se describe la distribución subsuperficial de los nutrientes en el Océano Pacífico oriental tropical, empleando los datos de la Expedición EASTROPAC de 1967~68 y datos anteriores a éstos. La concentración de nutrientes fue máxima a lo largo del ecuador, en la Corriente del Perú, en su prolongación mar afuera, en el Domo de Costa Rica y en las prolongaciones occidentales de esta característica. Se encontraron aguas pobres en nutrientes al norte del ecuador y bastante mar adentro. En estas aguas el nitrato era casi imperceptible (<0.1 µg-at/litro) en la superficie, pero las concentraciones de fosfato y ácido silícico fueron moderadas. Los experimentos de enriquecimiento indicaron que el nitrógeno era el principal nutriente limitante en aguas pobres, aun cuando se encontraron grandes cantidades de nitrógeno orgánico. Se determinaron las constantes de saturación media (K s ) para el desarrollo del fitoplancton sostenido por el amonio. Estos datos se emplearon para calcular los valores de la productividad primaria cerca a la superficie que pueden compararse favorablemente con los valores del 14C. Las medidas de la proporción de asimilación indican que las algas no tenían una deficiencia extremada de nitrógeno. Los valores determinados en el laboratorio de K, para el fosfato y ácido silícico indicaron que estos nutrientes limitaron rara vez la producción. En aguas ricas, los niveles de clorofila fueron inferiores a lo esperado según los niveles nutritivos y esta anomalía puede relacionarse a la alimentación o a la escasez de otros nutrientes distintos al nitrógeno (N), fósforo (P) o silicio (Si).
Resumo:
This report presents maps and statistics of summaries by season (dry and wet) of temperature, salinity, density, oxygen concentration, and oxygen saturation at six depths (0, 3, 10, 30, 50, and 100 m) in the Pacific Ocean off the Azuero Peninsula, Panama. Profiles made with a conductivity-temperature-pressure (CTD) probe on a 14-station grid from July 1989 through August 1991 provide the basis for these products. (PDF contains 37 pages.)
Resumo:
The results are described of eco-physiological investigations of the broad-pincered (Astacus astacus L.J.) crayfish and the long-pincered (Astacus astacus Esch.) crayfish, conducted in 1963—64 in the Institute of Zoology and Parasitology of the Academy of Science of the Lithuanian SSR, for the purpose of studying the interspecific relationship of these two species. In the course of the investigation were determined: the influence of the temperature of the environment on the consumption of oxygen by full grown individuals of both species and on the respiratory movements of the scaphognathites, the threshold temperatures and the saturation of the water by oxygen, the diel activity in the winter period.
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
The water quality in fish cages on Lake Kariba was studied. The Kruskal-Wallis test was used to determine whether the water quality parameters differed significantly among the cage-types (cage-type effect). Secchi disc readings ranged from 2 to 4 metres, while temperature ranged from 23 degree C to 29.5 degree C. The observed conductivity was between 98.7 mu S/cm and 102.3 mu S/cm. The pH was between 6.31 and 7.82. Concentrations of dissolved oxygen varied from 1.55 to 6.47 mg/l, while dissolved oxygen saturation ranged from 22.3% to 83.1%. Within the same month, temperature did not differ significantly among cages. Conductivity, pH, dissolved oxygen concentration and dissolved oxygen saturation differed significantly among the 3 cage-types. Temperature and pH levels in the cages were close to the optimum levels for the culture of cichlids. Sub-optimal levels of dissolved oxygen occurred occasionally in the octagonal cages.
Resumo:
Catch rates from surveys are used as indices of abundance for many fish species. Relative abundance estimates from surveys with longline gear do not usually account for possible effects of gear saturation, which potentially creates competition among fish for baited hooks and misrepresentations of abundance trends. We examined correlations between catch rates of sablefish (Anoplopoma fimbria) and giant grenadier (Albatrossia pectoralis) and between sablefish and shortraker (Sebastes borealis) and rougheye rockfish (Sebastes aleutianus) from 25 years of longline surveys in Alaska waters for evidence of competition for hooks. Sablefish catch rates were negatively correlated with giant grenadier catch rates in all management areas in Alaskan waters, and sablefish and rockfish were negatively correlated in five of the six areas, indicating that there is likely competition for hooks during longline surveys. Comparative analyses were done for trawl survey catch rates, and no negative correlations were observed, indicating that the negative correlations on the longline surveys are not due to differing habitat preferences or direct competition. Available adjustments for gear saturation may be biased if the probability of capture does not decrease linearly with baited hooks. A better understanding of each fish species’ catch probabilities on longline gear are needed before adjustments for hook competition can be made.
Resumo:
This is the Stillwaters monitoring programme. Summary results 2001 and 2002 from the Environment Agency North West. Until January 2001 the South Area Stillwaters Sampling Programme consisted of a rolling programme where five to six stillwaters were sampled three times a year (spring, summer and autumn). However, this method was not yielding the water quality information required for long term monitoring. Local weather conditions influence short-term water quality events, e.g. algal blooms, nutrient consumption, stratification, super-saturation etc, so results from one day sampling could only be regarded as individual ‘spot’ samples. Therefore year-on-year comparisons could not be made. It was decided that long-term water quality monitoring of the stillwaters would benefit more from sampling nutrient abundance over winter months. This would give an insight into the carry-over of nutrients available for algal growth the following year and so year-on-year productivity could be assessed. Survey results shown in this report were from: The Mere, Rostherne Mere, Melchett Mere, Tabley Mere, Tatton Mere, Hatchmere, Oak Mere, Black Lake, Chapel Mere, Bar Mere, Oss Mere, Marbury Big Mere, Comber Mere and Betley Mere.
Resumo:
This is the Stillwaters monitoring programme. Summary results 2003 and 2004 from the Environment Agency North West. This report is focuses in The Winter Monitoring of Stillwaters Programme, which began in January 2001 with the aim of gathering long term data on nutrient abundance over winter months. This allows assessment of nutrient ‘carry-over’ available for algal growth in the following year, plus year-on-year productivity. 14 stillwaters are monitored each year. The environmental issues associated with each Stillwater are summarised in the table below. Bank-side water samples are taken for nutrients (N, P and S) and chlorophyll. A YSI multi-parameter sonde measures temperature, pH, specific conductivity and dissolved oxygen (% saturation). Survey results shown in this report came from: Oak Mere and Bar mere.
Resumo:
This is the Stillwaters monitoring programme. Summary results 2004 and 2005 from the Environment Agency North West. This report focuses on the 5th year of winter monitoring analysis in 14 stillwaters in Cheshire. The 14 stillwaters analysed are: Comber Mere, Oss Mere, Marbury Big Mere, Chapel Mere, Bar Mere, Oak Mere, Hatch Mere, Black Lake, Betley Mere, Tabley Mere, Melchett Mere, Tatton Mere, Rostherne Mere and Mere mere. Nutrient availability in the stillwaters analysed is used to look into the productivity of the waterbody. Bank-side water samples were taken for nutrients (Nitrogen and Phosphorous) and chlorophyll. A YSI multi-parameter sonde measures temperature, pH, specific conductivity and dissolved oxygen (% saturation).
Resumo:
This is the Limnological survey of the Cheshire, Shropshire, and Staffordshire Meres: Interim data report produced by the University of Liverpool in 1992. This report looks at the Limnological survey data from Cheshire, Shropshire and Staffordshire Meres. Limnological data of the report covers: changes in water conductivity, Phenolphthalein Alkalinity, Total Alkalinity, pH, Chloride concentrations, Soluble reactive Phosphorus, Total Phosphorus, Nitrate Nitrogen, Ammonium Nitrogen, Silicate, Chlorophyll, Carotenoids, Secci disk depth, changes in Trophic Score, changes in DAFOR scores for submerged and floating plants and Oxygen saturation during summer. This report also contains Seasonal maps of different Meres. The more important limnological data are plotted as seasonal means in relation to the sampling sites. Conductivity is shown as μSiemens per cm, alkalinity as milliequivalents per litre. Total and soluble reactive (available inorganic) phosphorus are shown in terms of P in μg per litre. Nitrate and ammonium are shown in terms of N in mg per litre. Chlorophyll a is given as μg per litre. A profile of oxygen saturation is shown. These profiles were obtained towards the middle of the day in August and September.
Influence of soak time and fish accumulation on catches of reef fishes in a multispecies trap survey
Resumo:
Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.
Resumo:
The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribution, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been the subject of scientific study because they are being threatened by a growing number of anthropogenic stressors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem components. The present study helps to address this need by examining the distribution of mesophotic corals in the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions create patches of comparatively warm, calm, clear waters that remain relatively stable through time. Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 georeferenced records containing information about mesophotic coral occurrence and 34 environmental predictors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were randomly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum number of correctly predicted presence and absence records intersected on each ROC curve. Permutation importance and jackknife analysis were used to quantify the contribution of each environmental variable to the four ensemble models.
Resumo:
The sulfide binding characteristics of blood serum were studied in vitro in two deep-sea vesicomyid clams, Calyptogena pacifica and Vesicomya gigas. Both the C. pacifica and the V. gigas serum concentrated sulfide at least an order of magnitude above ambient levels. V. gigas accumulated sulfide faster than C. pacifica, reaching saturation at 5000 M after an hour. C. pacifica bound sulfide at half the rate of V. gigas, reaching saturation in about two hours at a substantially higher concentration of sulfide. The observed distribution of the animals near cold seeps in the Monterey Submarine Canyon can be explained by their different sulfide binding abilities. The hypothesis that cold seeps are actually much more unstable sources of sulfide than previously assumed is explored.