120 resultados para Regional identity
Resumo:
The principal objective of this study was to determine if additional net benefits can be derived from the sub-regional longline fishery by the introduction of a new management agreement that would centre on the provision of licensing arrangements that would allow access by eligible longline vessels to multiple Exclusive Economic Zones, i.e. Multi-zone Access. [90pp.]
Resumo:
This report examines the role mariculture could play in reducing poverty and providing alternative livelihood opportunities for people living in coastal areas. This includes a review of the current status of coastal poverty, coastal livelihoods and vulnerabilities within the Asia-Pacific region and the experiences and examples of sustainable economic development through mariculture. This review then identifies key follow-up actions and recommends strategies for future pro-poor mariculture development. (PDF contains 28 pages)
Resumo:
Whenever human beings have looked out on the sea, they have seen whales. First from the shore and later from ships when humanity entered the ocean realm as seafarers, we have responded to seeing these creatures with awe and wonder. Even when we hunted whales, a period well chronicled both in history and in literature, the sight of a whale brought an adrenaline rush that was not totally linked to potential economic gain. The first trips on boats specifically to watch, rather than hunt, whales began around 45 years ago in Southern California where the migrating gray whales, seen in the distance from land, drew vessels out for a closer look. Since that time whalewatching has boomed, currently conducted in over 40 countries around the world, including Antarctica, and estimated by economists at the Whale and Dolphin Conservation Society to have a 1999 worldwide economic value of around $800 million USD. The economic contribution to local coastal communities is particularly significant in developing countries and those where declining fish populations (and in some cases like the Japanese, international bans on whaling) have driven harvesters to look for viable alternatives. Clearly, whalewatching is now, in many places around the world, a small but thriving part of the regional economy. Like in the days of whaling, we still get the rush, but for some, money is back contributing to the physiological response. (PDF contains 90 pages.)
Resumo:
The Second STREAM Regional Conference was held in Tagaytay City, Philippines, from 8-10 June 2003 with the participation of 23 people from Australia, Cambodia, India, Nepal, Philippines, Thailand, Vietnam and Yunnan (China). Following a regional overview of STREAM’s themes, country partners, donors and funding, and activities, participants visited four “stations” on the themes of livelihoods, institutions, policy development, and communications, working in groups representing National Coordinators, Communications Hub Managers, and Partners. They engaged in discussions with a “station leader” and each other to learn about and comment on objectives, activities, outcomes and outputs, and to consider issues that need addressing in STREAM. (PDF has 49 pages.)
Resumo:
Since the STREAM Initiative’s official launch on 1 December 2001, this Regional Conference was the first opportunity for many colleagues directly involved in STREAM to come together. (PDF has 30 pages.)
Resumo:
(PDF contains 9 pages.)
Resumo:
Throughout the Asia-Pacific region capture fisheries and certain less intensive forms of aquaculture can and do play a vital role in livelihoods management, food security, and health and nutrition. Knowledge and experience exist that could be more effectively used in policy for poverty alleviation. (PDF contains 89 pages)
Resumo:
The governing council of Naca has resolved to effect a shift in emphasis from aquaculture development to aquaculture for development. This will require engaging partners from a broad spectrum of government and development agencies, the nature of the information that will need to be gathered and the strategies used for disseminating information and initiating action. The vehicle for operationalising this shift is STREAM - Support to Regional Aquatic Resources Management. This report outlines the nature of the STREAM network, its relationship to NACA's vision, mission, objectives and operating principles, and how STREAM differs from previous NACA's networks. Because STREAM is different, a theoretical basis for network communication is presented along with an outline of the preliminary steps in getting the network up and running. (Pdf contains 33 pages).
Resumo:
This statement was prepared by the participants of the FAO/NACA-STREAM Workshop on Aquatic Resources and Livelihoods: Connecting Policy and People, 17-19 March 2005, in Los Baños, Laguna, Philippines. This was the concluding event of the FAO Technical Cooperation Program (TCP) project entitled “Assistance in Poverty Alleviation through Improved Aquatic Resources Management in Asia-Pacific.” The purpose of the workshop was to review and share experiences of the NACA-STREAM Initiative, build consensus on the value of livelihoods approaches in aquatic resources management and poverty alleviation, and identify ways of promoting livelihoods approaches throughout the region. (Pdf contains 2 pages).
Resumo:
ENGLISH: 1. Quantitative phytoplankton samples were collected by the Inter-American Tropical Tuna Commission at the surface and ten meters in the Gulf of Panama, as follows: a) 18-21 March, 1958 (31 stations)-during the height of the upwelling season, b) 10-12 July, 1957 (10 stations)-during the transition to the rainy season at a time when mild upwelling winds reappear, c) 7-8 November, 1957 (15 stations)-during the height of the rainy season. 2. Maximum phytoplankton populations occurred during the upwelling season, followed by a considerable decline during July, and a further Subsidence during November. 3. A remarkable regional uniformity in species composition was observed during the surveys despite regional differences in growth conditions. Diatoms overwhelmingly dominated the communities. 4. During all surveys, the innermost regions, generally north of 8°30'N, were the most productive. The least productive areas were in the offing of San Miguel Bay and Parita Bay, suggesting that nutrient accretion via runoff is inadequate to sustain sizeable autotrophic plant populations in those regions. 5. During all surveys, phytoplankton growth appeared to be limited by nutrient availability. 6. During all surveys, phytoplankton growth appeared to be related to depth of the water column. 7. Although below average rainfall contributed to unusually favorable growth conditions (reduced stability, increased transparency and, presumably, nutrient reserves) during the November survey relative to November 1955 and 1956 at 8°45'N, 79°23'W, the anticipated heightened phytoplankton response was not observed. 8. During the November survey, the local diatom responses and their regional fluctuations could be satisfactorily related to the accompanying surface salinity conditions. However, this correspondence is undoubtedly attributable to factors associated with the observed salinity levels, probably nutrients, rather than salinity directly. 9. Unusually warm conditions occurred during the March survey, attributable to considerably weaker upwelling winds than normally occurring then, which contributed to a considerably lower standing crop and a retardation in succession of three to five weeks relative to that observed during 1955-1957 at 8°45'N, 79°23'W in the Gulf of Panama. 10. During the March survey, a well defined inverse relationship existed between mean temperature and mean diatom abundance in the upper ten meters, and between transparency and mean diatom abundance. A direct relationship occurred between surface salinity and mean diatom abundance in the upper ten meters. These relationships are interpreted to indicate that diatom abundance primarily reflected the nutrient concentrations associated with a given upwelling intensity, rather than describing casual relationships. 11. The survey results indicate that the phytoplankton dynamics observed at 8°45'N, 79°23'W from November, 1954 through May, 1957 are generally representative of the Gulf of Panama. 12. The following new forms, to be described in a later publication, were observed during the surveys: Actinoptychus undulatus f. catenata n.f., Asterionella japonica f. tropicum n.f., Leptocylindrus maximus n. sp., Skeletonema costatum f. tropicum n.f. SPANISH: 1. La Comisión Interamericana del Atun Tropical recolectó en el Golfo de Panama muestras cuantitativas de fitoplancton en la superficie y a los diez metros, como sigue: a) Del 18 al 21 de marzo de 1958 (31 estaciones)-durante el maximum de la estación de afloramiento. b) Del 10 al 12 de julio de 1957 (10 estaciones)-durante la epóca de transición a la estación lluviosa cuando reaparecen los vientos ligeros que causan el afloramiento. c) Del 7 al 8 de noviembre de 1957 (15 estaciones)-durante el maximum de la estación lluviosa. 2. Las poblaciones maximas de fitoplancton aparecieron durante la estación de afloramiento, seguido por una considerable disminución durante el mes de julio y una calma durante noviembre. 3. Durante la investigación se observó una remarcable uniformidad regional en la composición de las especies a pesar de las diferencias regionales en las condiciones de crecimiento. Las diatomeas predominaban en gran numero en las comunidades. 4. Durante todas las investigaciones, las regiones mas cerca de la costa, generalmente al norte de los 8°30'N, eran las mas productivas. Las areas menos productivas fueron las mar afuera de las Bahias de San Miguel y Parita, lo que sugiere que el aumento en las sales nutritivas causado por las escorrentias es inadecuado para sostener poblaciones grandes de plantas autotróficas en estas regiones. 5. Durante todas las investigaciones, el crecimiento del fitoplancton parecio estar limitado por la disponibilidad de las. sales nutritivas. 6. Durante todas las investigaciones el crecimiento del fitoplancton parecio estar relacionado con la profundidad de la columna de agua. 7. Aunque las precipitacion por debajo del promedio normal contribuyo a condiciones desusadamente favorables de crecimiento (estabilidad reducida, aumento de la transparencia y, presumiblemente, de la reserva de sales nutritivas) durante la investigación de noviembre en relación a noviembre de 1955 y de 1956 en los 8°45'N, 79°23'W, no se observo-la alta reacción de fitoplancton que se esperaba. 8. Durante la investigación de noviembre, las reacciones locales de las diatomeas y sus fluctuaciones regionales pudieron relacionarse en forma satisfactoria con condiciones asociadas con la salinidad de la superficie. Sin embargo, esta correspondencia puede atribuirse sin duda a factores asociados con los niveles observados de salinidad, probablemente con las sales nutritivas, en lugar de directamente con la salinidad. 9. Condiciones calurosas no comunes ocurrieron durante la investigación de marzo, las que pueden atribuirse a que los vientos que ocasionan el afloramiento fueran mas debiles que los normales, lo que contribuyó a que la cosecha estable fuera considerablemente mas baja y a la demora de tres a cinco semanas en la sucecion relativa a la que se observó durante 1955-1957 en los 8°45'N, 8°23'W, en el Golfo de Panama. 10. Durante la investigación de marzo, existió una relación inversa bien definida entre la temperatura y la abundancia media de las diatomeas en los diez metros superiores, y entre la transparencia y la abundancia media de las diatomeas. Una relación directa ocurrio entre la salinidad de superficie y la abundancia media de las diatomeas en los diez metros superiores. Estas relaciones se interpretan como indicadoras de que la abundancia de diatomeas refleja primeramente las concentraciones de las sales nutritivas asociadas con una intensidad de afloramiento dada, en lugar de describir relaciones causales. 11. Los resultados de la investigacion indican que la dinamica del fitoplancton observada en los 8°45'N, 79°23'W, desde noviembre de 1954 a mayo de 1957, es generalmente representativa del Golfo de Panama. 12. Durante las investigaciones se observaron las siguientes formas nuevas, las que seran descritas en una publicación posterior: Actinoptychus undulatus f. catenata n.f., Asterionella japonica f. tropicum n.f., Leptocylindrus maximus n. sp., Skeletonema costatum f. tropicum n.f.
Resumo:
ENGLISH: Howard and Landa (1958) and Barrett and Howard (1961) have studied the life history of the anchoveta in most of the areas where this species occurs in important quantities. The Gulf of Panama was the only area of Panama included in these studies, as this was the only one from which sufficient samples were available. Berdegue (1958) compared certain meristic and morphometric characters of anchovetas from Montijo Bay and nine other areas of the eastern tropical Pacific Ocean. He found statistically significant differences, and concluded that the fish of the different areas belonged to separate "populations." Fish from Chiriquí province were not included in his study. Since the, completion of the above-mentioned studies, a number of collections of anchovetas from Montijo Bay and Chiriquí province have been obtained. In the present report use is made of this material to determine the salient facts regarding the life history of the anchoveta from these areas and to supplement the available knowledge of the identity of the intraspecific groups. Acknowledgment is extended to Dr. Milner B. Schaefer, formerly Director of Investigations, Inter-American Tropical Tuna Commission (now Director, Institute of Marble Resources, University of California), Mr. Clifford L. Peterson, Assistant Director of Investigations, and Mr. Edward F. Klima (now with the U. S. Bureau of Commercial Fisheries) for advice and assistance rendered to the project. The shrimp-boat samples were collected by Captains Robert Barrett, Stephen Barrett, and Chester McLean. SPANISH: Howard y Landa (1958) y Barrett y Howard (1961) han estudiado la historia natural de la anchoveta en la mayoría de las áreas en donde esta especie aparece en cantidades importantes. El Golfo de Panamá es la única area de Panamá incluida en estos estudios, ya que es la única de la cual hubo suficientes muestras disponibles. Berdegué (1958) camparó ciertos caracteres merístieos y morfométricos de la anehoveta del Golfo de Montijo y otras nueve áreas del Océano Pacífico Oriental Tropical. Encontró diferencias estadísticamente significativas e hizo la conclusión de que los peces de las diferentes áreas pertenecían a "poblaciones" separadas. Los peces de la Provincia de Chiriquí no fueron incluidos en su estudio. Desde la terminación de los estudios antes meneionados se obtuvieron varias recolecciones de anchovetas del Golfo de Montijo y de la Provincia de Chiriquí. En el presente informe se usó este material para determinar los hechos sobresalientes referentes a la historia natural de la anchoveta de estas áreas y suplir el conocimiento disponible de la identidadde los grupos intraespecíficos. Se hace extensivo un reconocimiento al Dr. Milner B. Schaefer, antiguo director de investigaciones de la Comisión Interamericana del Atún Tropical (ahora director del Institute of Marine Resources, University of California), al Sr. Clifford L. Peterson, asistente del director de investigaciones, y al Sr. Edward F. Klima (ahora can el U. S. Bureau of Commercial Fisheries) por su consejo y ayuda prestados en este proyecto. Las muestras de los barcos camaroneros fueron reeolectadas por los capitanes Robert Barrett, Stephen Barrett y Chester McLean
Resumo:
EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)
Resumo:
A discussion is presented on the potential for fishery development in the Niger Delta region, considering engineering activities and food production potentials of the freshwater zone and immediate hinterland, the brackishwater mangrove swamps and the estuaries. An examination of current trends in the environment indicates that a possible solution to improved exploitation of the region lies in hydraulic engineering, the manipulation of environmental conditions through varying freshwater and seawater inputs so as to increase aquatic and wetland productivity
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
Ocean observing has been recognized by the US Commission on Ocean Policy, the Ocean Research and Resources Advisory Panel, the Joint Ocean Commission Initiative, and many other ocean policy entities and initiatives as foundational to meeting the nation’s need for more effective coastal and ocean management. The Interim Report of the Interagency Task Force on Ocean Policy (September 2009) has called for strengthening the nation’s capacity for observing the nation’s ocean, coastal, and Great Lakes systems. (PDF contains 3 pages)