73 resultados para Políticos - Portugal - séc.20


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ghost fishing is the term used to describe the continued capture of fish and other living organisms after a fisherman has lost all control over the gear. Traps may be lost for a variety of reasons including theft, vandalism, abandonment, interactions with other gear, fouling on the bottom (i.e., traps and ropes are caught on rocky substrate), bad weather, and human error (Laist, 1995). Annual trap loss can be as high as 20% to 50% of fished traps in some fisheries (Al-Masroori et al., 2004). Because lost traps can continue to fish for long periods, albeit with decreasing efficiency over time (e.g., Smolowitz, 1978; Breen, 1987, 1990; Guillory, 1993), ghost fishing is a concern in fisheries worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the ongoing studies concerned with the small-scale fisheries of the South of Portugal, experimental fishing was carried out with monofilament gillnets and small hook longlines within the same area. Sixty-two species were caught, of which 20 were common to both gears. Pronounced differences in terms of the relative importance of different species in the catches were observed. Size selection patterns also differed, with highly overlapped hook catch distributions and few species showing evidence for size selectivity. In contrast, strong selectivity was characteristic of species which tend to be wedged in gillnets. Whereas smaller stretched mesh sizes (particularly 40 and 50 mm) caught significant numbers of illegal sized fish, this was mininmal in the longlines. Some implications for management are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of Opening Session (pdf 42 KB) Report of Governing Council Meetings (pdf 70 KB) Reports of Science Board and Committees: Science Board (pdf 57 KB) Biological Oceanography Committee (pdf 43 KB) Working Group 14: Effective Sampling of Micronekton Advisory Panel on Marine birds and mammals Fishery Science Committee (pdf 31 KB) Working Group 16 on Implications of Climate change to Fisheries Management Marine Environmental Quality Committee (pdf 47 KB) Working Group 8: Practical Assessment Methodology Working Group 15 on Ecology of Harmful Algal Blooms (HABs) in the North Pacific Physical Oceanography and Climate Committee (pdf 41 KB) Working Group 13: CO2 in the North Pacific Implementation Panel on the CCCC Program (pdf 120 KB) BASS Task Team Advisory Panel on Iron Fertilization Experiment MODEL Task Team MONITOR Task Team Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific REX Task Team Technical Committee on Data Exchange (pdf 24 KB) Finance and Administration: Report of the Finance and Administration Committee (pdf 49 KB) Assets on 31st of December, 1999 Income and Expenditures for 1999 Budget for 2001 Report of the Fund-Raising Committee (pdf 20 KB) Composition of the Organization (pdf 27 KB) List of Participants (pdf 94 KB) List of Acronyms (pdf 13 KB)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the Fifth Annual Meeting Agenda Report of Opening Session Report of Governing Council Meetings Reports of Science Board and Committees Science Board Working Group 5: Bering Sea (Final Report) Working Group 9: Subarctic Pacific Monitoring Report of the First Meeting Report of the Second Meeting Biological Oceanography Committee Working Group 11: Consumption of Marine Resources by Marine Birds and Mammals Fishery Science Committee Working Group 12: Crabs and Shrimps Marine Environmental Quality Committee Working Group 8: Practical Assessment Methodology Physical Oceanography and Climate Committee Working Group 10: Circulation and Ventilation in the Japan Sea /East Sea and its Adjacent Areas Technological Committee on Data Exchange Finance and Administration Report of Finance and Administration Committee Assets on 31st of December, 1995 Income and Expenditures for 1995 Budget for 1997 Composition of the Organization Officers, Delegates, Finance and Administration Committee, Science Board, Secretariat, Scientific and Technical Committees List of Participants List of Acronyms (Document has 163 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The center of low pressure of a tropical disturbance which moved northward in the Gulf of Mexico, reached land between Panama City and Port St. Joe, Florida, on September 20, 1969. This system was nearly stationary for 48 hours producing heavy rainfall in the Quincy-Havana area, 70-80 miles northeast of the center. Rainfall associated with the tropical disturbance exceeded 20 inches over a part of Gadsden County, Florida, during September 20 through 23, 1969, and the maximum rainfall of record occurred at Quincy with 10.87 inches during a 6-hour period on September 21. The 48-hour maximum of 17.71 inches exceeded the 1 in 100-year probability of 16 inches for a 7-day period. The previous maximum rainfall of record at Quincy (more than 12 inches) was on September 14-15, 1924. The characteristics of this historical storm were similar in path and effect to the September 1969 tropical disturbance. Peak runoff from a 1.4-square mile area near Midway, Florida, was 1,540 cfs (cubic feet per second) per square mile. A peak discharge of 45,600 cfs on September 22 at the gaging station on the Little River near Quincy exceeded the previous peak of 25,400 cfs which occurred on December 4, 1964. The peak discharge of 89,400 cfs at Ochlockonee River near Bloxham exceeded the April 1948 peak of 50,200 cfs, which was the previous maximum of record, by 1.8 times. Many flood-measurement sites had peak discharges in excess of that of a 50-year flood. Nearly $200,000 was spent on emergency repairs to roads. An additional $520,000 in contractual work was required to replace four bridges that were destroyed. Agricultural losses were estimated at $1,000,000. (44 page document)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Views of Panama and the Canal. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of studies was initiated to assess the condition of benthic macroinfauna and chemical contaminant levels in sediments and biota of the Gray’s Reef National Marine Sanctuary (GRNMS) and nearby shelf waters off the coast of Georgia. Four key objectives of the research are (1) to document existing environmental conditions within the sanctuary in order to provide a quantitative benchmark for tracking any future changes due to either natural or human disturbances; (2) to examine broader cross-shelf spatial patterns in benthic fauna and sediment contaminant concentrations and to identify potential controlling factors associated with the observed patterns; (3) to assess any between-year temporal variability in benthic fauna; and (4) to evaluate the importance of benthic fauna as prey for higher trophic levels. Such questions are being addressed to help fulfill long-term science and management goals of the GRNMS. However, it is anticipated that the information will be of additional value in broadening our understanding of the surrounding South Atlantic Bight (SAB) ecosystem and in bringing the knowledge to bear on related resourcemanagement issues of the region. We have begun to address the first three of these objectives with data from samples collected in spring 2000 at stations within GRNMS, and in spring 2001 at stations within the sanctuary and along three cross-shelf transects extending from the mouths of Sapelo, Doboy, and Altamaha Sounds out to sanctuary depths (about 17-20 m). This report provides a description of baseline conditions within the sanctuary, based on results of the spring 2000 survey (Section II), and uses data from both 2000 and 2001 to examine overall spatial and temporal patterns in biological and chemical variables within the sanctuary and surrounding inner-shelf environment (Section III). (PDF contains 65 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable Aquaculture for Poverty Alleviation (SAPA) is a strategy under the overall national program for hunger eradication and poverty reduction. This reflects high attention by the Ministry of Fisheries (MOFI) to the poor. Since the strategy was initiated, several actions have been taken. Recently, conferences and meetings were conducted in Hanoi, Thai Nguyen and Quang Tri. Consequently we also have workshops on a regional basis, and today we are pleased to conduct a workshop in Long An on livelihoods analysis. Now at the Ministry, there are more than 340 projects in aquaculture to attack poverty. The launch of SAPA has been given a high priority among support agencies. Recently Mr Gill of the World Bank and the Ministry agreed that they would act to strengthen aquaculture for poverty reduction. So today with the support of the Long An People’s Committee, NACA and STREAM we have a workshop to strengthen learning about livelihoods analysis. (PDF has 61 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 186 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 88 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was started by a proposal made during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program are desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communications and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 108 pages.)