32 resultados para Organic water pollutants.
Resumo:
The alkaloid drug colchicine is a mitotic inhibitor. The results of this study show that colchicine influence the normal functioning of the mitotic process in Sarotherodon galilaeus, S. melanotheron and the hybrid S. galilaeus, X S. melanotheron leading to the production of unusual chromosomal events such as anaphase bridges, laggards and polyploid cells. These unusual events could have serious genetic implications in the area of variability of the chromosome number. The use of colchicine also produces results with consistent karyotypes and better morphology as well as providing detailed information on the behaviour of the chromosome of the early life of fish. The knowledge of such information will be of great use in cytotaxonomy, fish breeding and in studying the effects of sub-lethal levels of water pollutants on fish
Resumo:
The coastal districts, as an intersection of two perfectly different ecosystems of dry land and sea, is one of the most complicated and the richest natural system on earth. Considering these areas are constantly exposed to aggregation of water pollutants and also consequence resulting from construction and development activities, they are very vulnerable. Therefore, "sensitive Coastal areas" has become a common word in the related subjects to marine environment recently. The said title relates to the areas of the coastal lines which are vulnerable to the natural condition or human actions because of ecological, social, economic, educational and research importance, also they need particular supports. The southern coasts of Caspian Sea, In Iran prominent samples are of these sensitive areas which their environment are exposed to demolition and destruction intensely, due to increasing and uncontrolled development. The first stage of protecting and managing the coastal areas is identifying sensitive Coastal areas and broadening the Coasts. In this survey, we attempted to examine a definite area in the southern coasts of Caspian Sea. In Iran, by profiting from the world experiences and concluded researches in Iran especially the concluded studies by marine environment office and the Environment protection organization on the subject of determination criteria of the sensitive ecological districts. For this purpose (In Gilan Province) Boujagh national park district which is located in the mouth of sefidroud river and also is possessed of the special ecological and environmental features and distinctions. In this survey, first they said district is divided proportionally on the basis of using a grid system in order to identify the sensitive ecological districts and broaden the coast, and then the desired indices have been determined and scored by numeral valuation method in each unit and then analysis has been done by using of the geography information system (GIS) and final has estimated economic valuation of sensitive ecological areas that is presented in this essay.
Resumo:
The mobility of heavy metals (Zn, Cd, Pb and Ni) was studied in the laboratory acidic leaching two different soils around Ibadan with simulated acid rain. The sampling was carried out from two different sites viz: Orogun and Ilupeju respectively. For Orogun site a depth of 128cm was reached (consisting of four horizons). Different length of polyvinyl chloride (PVC) pipes were cut for different soil horizon depth as observed on the field. The PVC pipes were packed with requires masses of soil. This is then leached using simulated acid rain of different pH of 2.0, 4.0, 6.0 and 8.0 after spiking with known volume of standard solution of metals of interest. It was found that simulated acid rain enhanced the mobility of metals in solution. The pH, Cation Exchange capacity, % clay and organic matter were found to contributed majority to the mobility of metals. Generally as observed, the mobility of metal was to follow the order Zn>Ni>Pb>Cd as the soil is becoming more acidic
Resumo:
20 samples of soil or sediment (7 of which were predominantly sand) from various locations were received for analysis of their content of organic pollutants. These analyses were performed using a capillary column gas chromatograph equipped with an electron impact (E.I.) mass spectrometer as detector and using computerised data storage. In addition to the target compounds, the full scan data were examined to determine the composition of natural organic products and a series of diagnostic fragment ions was used to search for additional anthropogenic products. Organic-rich environmental samples are notoriously difficult to analyse for pollutant organics owing to the presence of high concentrations of many natural organic compounds. A single procedure for extraction and clean-up was adopted. It was designed for chlorinated aliphatic and aromatic hydrocarbons and other pesticides containing acidic functional groups and was based on published methods for the determination of organic pollutants in soils and sediments. 4 soils and 2 sands showed levels of one or two groups of PCBs slightly in excess of the detection limit, one sample showed a similar level of 2,4-D and 3 samples contained dieldrin at or just above the detection limit.
Resumo:
Penaeus monodon postlarvae were subjected to increasing feed concentrations and their growth and survival rates were recorded. Measurements were made of dissolved organic matter, and ammonia and nitrite-nitrogen concentrations. Survival was highest at the lowest feeding level and decreased as feed concentration increased. It is concluded that although organic matter enriches the food supply for P. monodon postlarvae, at higher concentration levels it can pollute the culture water, which in turn leads to mass mortality of the postlarvae. Secondly, the survival rate of P. monodon postlarvae is directly related to dissolved organic matter concentration, oxygen tension, and ammonia-nitrogen concentrations in the culture water. Even at sublethal levels these adverse environmental conditions decrease the survival rate.
Resumo:
It is global concern that soil and water were contaminated with organic substances such as BTEX (benzene) (B), toluene (T) and xylene (x) .The presence of excessive amounts of BTEX in aqueous surroundings may have a greatly adverse impact on water quality and thus endanger public health and welfare. Carbon nanotubes (CNT) have aroused widespread attention as a new type of adsorptions due to their outstanding ability for the removal of various inorganic and organic pollutants from large volume of wastewater. Due to variety of adsorbent and their ability to adsorb pollutant, it is possible to reduce expenses and completely omit pollutant. In this CNT is used as a new adsorbent for removal pollutant such as benzene, toluene, and xylene. The result in the area of adsorbing benzene, toluene, and xylene is as follows: the changes of pH don’t affect the capacity of adsorption and the greatest amount of adsorption occurs in pH. The greatest amount of adsorption occurs when using 0.01gr CNT oxidized. Comparing CNT with CNT oxidized in term of adsorption capacity, it is proved that the adsorption capacity of CNT oxidized is much more than CNT. The result of comparing the percentage of adsorption of mentioned elements (B, X, T) is as follows; the amount of adsorption of xylene is more than toluene and toluene is more than benzene. It should be mentioned that in this research the percentage of adsorption to measure is between to 70-80.
Resumo:
In this study, the effect of anti-corrosion inhibitor addition to epoxy coating, on the disbanding rate was evaluated. First to determination of mechanism, the bare steel substrates were immersed in the 3.5% NaCl solution and the solution containing 1 mM anti corrosion. The Electrochemical Impedance Spectroscopy was performed after 5 and 24 hour. The results indicated a lower corrosion rate in the presence of inhibitor. During the time, charge transfer resistance, was decreased for the substrates immersed in NaCl solution, and increased for the substrates immersed in NaCl solution containing 1 mM anti corrosion. This result can be related to more stability of corrosion products in presence of anti-corrosion and film formation. The coated substrates, with four different concentration of anticorrosion in coating, were protected under -1.2 voltage in the 3.5% NaCl solution. After 12 and 24 hour, the EIS test and disbanding area measurement, were evaluate. The lower disbanding rate, more charge transfer resistance and less double layer capacitance for the coating containing 0.75w% inhibitor, were observed. The result of Pull-off test after 1 day immersion in 3.5% NaCl solution, showed more wet adhesion for the coating containing 0.75w% inhibitor. The images of FE-SEM electron microscope and surface analyses EDX on the coated substrate after disbanding and the bare substrate immersed in 3.5w% NaCl containing 1 mM inhibitor, were proved the formation of stabilized film.
Resumo:
A post Agnes study emphasizing environmental factors...weekly sampling at eight stations from 28 June to August 30, 1972. Spatial and temporal changes in the distribution of many factors, e.g., salinity, dissolved oxygen (DO), seston, particulate carbon and nitrogen, inorganic and organic fractions of dissolved nitrogen and phosphorus, and chlorophyll a were studied and compared to earlier extensive records. Patterns shown by the present data were compared especially with a local heavy storm that occurred in the Patuxent drainage basin during July 1963. Some interesting correlations were observed in the data. (PDF has 39 pages.)
Resumo:
A post-Agnes study that emphasized environmental factors was carried out on the Patuxent River estuary with weekly sampling at eight stations from 28 June t o 30 August 1972. Spatial and temporal changes in the distribution of many factors , e.g., salinity , dissolved oxygen, seston, particulate carbon and nitrogen, inorganic and organic fractions of dissolved nitrogen and phosphorus, and chlorophyll a were studied and compared t o extensive earlier records. Patterns shown by the present data were compared especially with a local heavy storm that occurred in the Patuxent drainage basin during July 1969. Estimates were made of the amounts of material contributed via upland drainage. A first approximation indicated that 14.8 x l0 (3) metric tons of seston were contributed t o the head of the estuary between 21 and 24 June. (PDF contains 46 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
Lipophilic organic substances in the environment are nearly exclusive of anthropogenic origin. Input of contaminants to sea and fresh water lakes arise via rivers, the atmosphere, direct intake and disposals. Intake by fish occurs via diet or directly from the water. The contamination level in fish is influenced by the fishing ground, fat content, biological cycle and age of the fish. But the effect for fish as food is very limited. Levels of lipophilic organic contaminants in the edible part of fish important for human consumption are far below the German maximum allowable evels of residues and pollutants.
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production
Resumo:
Changes in sustainability of aquatic ecosystems are likely to be brought about by the global warming that has been widely predicted. In this article, the effects of water temperature on water-bodies (lakes, oceans and rivers) are reviewed followed by the effects of temperature on aquatic organisms. Almost all aquatic organisms require exogenous heat before they can metabolise efficiently. An organism that is adapted to warm temperatures will have a higher rate of metabolism of food organisms and this increases feeding rate. In addition, an increase in temperature raises the metabolism of food organisms, so food quality can be altered. Where populations have a different tolerance to temperature the result is habitat partitioning. One effect of prolonged high temperature is that it causes water to evaporate readily. In the marine littoral this is not an important problem as tides will replenish water in pools. Small rain pools are found in many tropical countries during the rainy season and these become incompletely dried at intervals. The biota of such pools must have resistant stages within the life cycle that enable them to cope with periods of drying. The most important potential effects of global warming include (i) the alteration of existing coastlines, (ii) the development of more deserts on some land masses, (iii) higher productivity producing higher crop production but a greater threat of algal blooms and (iv) the processing of organic matter at surface microlayers.
Resumo:
The reaction of Mn(II) with water-dissolved oxygen, to a higher manganese hydroxide in an alkaline medium, as with the longstanding classic Winkler method, is the first step in the method described here. The assumption for faultless results by the conventional and modified Winkler method is clean water, which contains no organic substances by Mn(III) or Mn(IV). In many cases, however, eg. in river and lake-water tests, it can be seen with the naked eye that after some time the originally brown-coloured precipitate of manganese hydroxide becomes more and more colourless. Oxygen content was analysed in the water samples and evaluated by raising the amount of the leuko-base and giving the corresponding dilution of the colouring matter solution formed still higher oxygen contents can be measured.
Resumo:
There is at the moment no direct method of determining the organic matter content of natural waters. In 1940/41 8 different water bodies in central Russia were studied and their organic matter identified. The author concludes that there is currently no easy method to determine organic matter in water. A number methods need to be applied.