58 resultados para North Carolina. Dept. of State Auditor
Resumo:
This study aims to reconstruct the history of shore whaling in the southeastern United States, emphasizing statistics on the catch of right whales, Eubalaena glacialis, the preferred targets. The earliest record of whaling in North Carolina is of a proposed voyage from New York in 1667. Early settlers on the Outer Banks utilized whale strandings by trying out the blubber of carcasses that came ashore, and some whale oil was exported from the 1660s onward. New England whalemen whaled along the North Carolina coast during the 1720s, and possibly earlier. As some of the whalemen from the northern colonies moved to Nortb Carolina, a shore-based whale fishery developed. This activity apparently continued without interruption until the War of Independence in 1776, and continued or was reestablished after the war. The methods and techniques of the North Carolina shore whalers changed slowly: as late as the 1890s they used a drogue at the end of the harpoon line and refrained from staying fast to the harpooned whale, they seldom employed harpoon guns, and then only during the waning years of the fishery. The whaling season extended from late December to May, most successfully between February and May. Whalers believed they were intercepting whales migrating north along the coast. Although some whaling occurred as far north as Cape Hatteras, it centered on the outer coasts of Core, Shackleford, and Bogue banks, particularly near Cape Lookout. The capture of whales other than right whales was a rare event. The number of boat crews probably remained fairly stable during much of the 19th century, with some increase in effort in the late 1870s and early 1880s when numbers of boat crews reached 12 to 18. Then by the late 1880s and 1890s only about 6 crews were active. North Carolina whaling had become desultory by the early 1900s, and ended completely in 1917. Judging by export and tax records, some ocean-going vessels made good catches off this coast in about 1715-30, including an estimated 13 whales in 1719, 15 in one year during the early 1720s, 5-6 in a three-year period of the mid to late 1720s, 8 by one ship's crew in 1727, 17 by one group of whalers in 1728-29, and 8-9 by two boats working from Ocracoke prior to 1730. It is impossible to know how representative these fragmentary records are for the period as a whole. The Carolina coast declined in importance as a cruising ground for pelagic whalers by the 1740s or 1750s. Thereafter, shore whaling probably accounted for most of the (poorly documented) catch. Lifetime catches by individual whalemen on Shackleford Banks suggest that the average annual catch was at least one to two whales during 1830·80, perhaps about four during the late 1870s and early 1880s, and declining to about one by the late 1880s. Data are insufficient to estimate the hunting loss rate in the Outer Banks whale fishery. North Carolina is the only state south of New Jersey known to have had a long and well established shore whaling industry. Some whaling took place in Chesapeake Bay and along the coast of Virginia during the late 17th and early 18th centuries, but it is poorly documented. Most of the rigbt whales taken off South Carolina, Georgia, and northern Florida during the 19th century were killed by pelagic whalers. Florida is the only southeastern state with evidence of an aboriginal (pre-contact) whale fishery. Right whale calves may have been among the aboriginal whalers' principal targets. (PDF file contains 34 pages.)
Resumo:
The distribution and abundance of ichthyoplankton was investigated from November 1979 to March 1980 along a transect from coastal to continental slope waters in Onslow Bay, North Carolina. Representatives of 66 families were collected; 24 of which were tropical families, a category that also includes families of typically oceanic and deep-sea fishes. Larvae of tropical species were collected in coastal and shelf waters, demonstrating the intrusion of Gulf Stream waters onto the continental shelf. From December through March, frontal waters that separated cold open-shelf surface waters from warm Gulf Stream surface waters were observed. Higher abundances of fish larvae were sometimes, but not consistently, associated with frontal waters. A great diversity of taxa was collected in offshore waters, and densities of larvae were low in coastal waters; low densities were attributed to gear selectivity rather than low larval abundance. Larvae of commercially and recreationally important estuarine-dependent species, especially Leiostomus xanthus and Micropogonias undulatus, were dominant components of the ichthyoplankton. Representatives of the families Bothidae, Clupeidae, Gadidae, Gonostomatidae, Myctophidae, Ophidiidae, and Sparidae were also important components of the ichthyoplankton. Larvae of species representing two strikingly different life history types-mesopelagic and estuarine-dependent frequently cooccurred.(PDF file contains 32 pages.)
Resumo:
The migratory population of striped bass (Morone saxatilis) (>400 mm total length[TL]) spends winter in the Atlantic Ocean off the Virginia and North Carolina coasts of the United States. Information on trophic dynamics for these large adults during winter is limited. Feeding habits and prey were described from stomach contents of 1154 striped bass ranging from 373 to 1250 mm TL, collected from trawls during winters of 1994-96, 2000, and 2002-03, and from the recreational fishery during 2005-07. Nineteen prey species were present in the diet. Overall, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli) dominated the diet by boimass (67.9%) and numerically (68.6%). The percent biomass of Atlantic menhaden during 1994-2003 to 87.0% during 2005-07. Demersal fish species such as Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) represented <15% of the diet biomass, whereas alosines (Alosa spp.) were rarely observed. Invertebrates were least important, contributing <1.0% by biomass and numerically. Striped bass are capable of feeding on a wide range of prey sizes (2% to 43% of their total length). This study outlines the importance of clupeoid fishes to striped bass winter production and also shows that predation may be exerting pressure on one of their dominant prey, the Atlantic menhaden.
Resumo:
In February 2006, an Alternative Platform Observer Program (APP) was implemented in North Carolina (NC) to observe commercial gillnet trips by small vessels [<24 ft (7.2 m)] in nearshore waters out to three nm (5.6 km). Efforts began with outreach to the fishing industry while simultaneously gathering information to be incorporated in a Database of Fishermen. From 30 March 2006 through 31 March 2007, 36 trips were observed. Observed trips of the NC nearshore gillnet fishery targeted seven species: kingfish (Menticirrhus spp.), Spanish mackerel (Scomberomorus maculatus), spiny dogfish (Squalus acanthias), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion nebulosus), striped bass (Morone saxatilis), and weakfish (Cynoscion regalis). Of the 36 trips, 20 (55.6%) were with vessels that were new to the Northeast Fisheries Observer Program (NEFOP), having never carried an observer. Based on the landings data for small vessels from North Carolina Division of Marine Fisheries (NCDMF), the APP has achieved 10.1% coverage by number of trips and 4.0% by pounds landed. No incidental takes of bottlenose dolphins were observed by the APP, although bottlenose dolphins were sighted during 19 (52.8%) observed trips. The APP has drastically increased the number of observed trips of small vessels in the nearshore waters of NC. When combined with trips observed by NEFOP (n=205), the APP resulted in a 15.6% increase in the number of observed gillnet trips. (PDF contains 34 pages)
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
We analyzed the relationships between the larval and juvenile abundances of selected estuarine-dependent fishes that spawn during the winter in continental shelf waters of the U.S. Atlantic coast. Six species were included in the analysis based on their ecological and economic importance and relative abundance in available surveys: spot Leiostomus xanthurus, pinfish Lagodon rhomboides, southern flounder Paralichthys lethostigma, summer flounder Paralichthys dentatus, Atlantic croaker Micropogonias undulatus, and Atlantic menhaden Brevoortia tyrannus. Cross-correlation analysis was used to examine the relationships between the larval and juvenile abundances within species. Tests of synchrony across species were used to find similarities in recruitment dynamics for species with similar winter shelf-spawning life-history strategies. Positive correlations were found between the larval and juvenile abundances for three of the six selected species (spot, pinfish, and southern flounder). These three species have similar geographic ranges that primarily lie south of Cape Hatteras. There were no significant correlations between the larval and juvenile abundances for the other three species (summer flounder, Atlantic croaker, and Atlantic menhaden); we suggest several factors that could account for the lack of a relationship. Synchrony was found among the three southern species within both the larval and juvenile abundance time series. These results provide support for using larval ingress measures as indices of abundance for these and other species with similar geographic ranges and winter shelf-spawning life-history strategies.
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Resumo:
A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)
Resumo:
In accordance with the Marine Mammal Protection Act (MMPA, 16 U.S.c. et seq.), the National Marine Fisheries Service (NMFS) is required to publish an annual List of Fisheries (LOF) which categorizes U.S. commercial fisheries based on their level of interaction with marine mammals. The objective of this document is to provide a characterization of the six 2001 MMPA Category II commercial fisheries (i.e., those with occasional interactions with marine mammals) in North Carolina (NC). This report outlines the history, fishing method and gear configurations (using the U.S. system of measurement), primary target species, temporal and spatial characteristics including trip and landing statistics, and monthly variations in species composition for each fishery for a five-year period (1995 - 1999). (PDF contains 63 pages)
Resumo:
This document represents a pilot effort to map social change in the coastal United States—a social atlas characterizing changing population, demographic, housing, and economic attributes. This pilot effort focuses on coastal North Carolina. The impetus for this project came from numerous discussions about the usefulness and need for a graphic representation of social change information for U.S. coastal regions. Although the information presented here will be of interest to a broad segment of the coastal community and general public, the intended target audience is coastal natural resource management professionals, Sea Grant Extension staff, urban and regional land-use planners, environmental educators, and other allied constituents interested in the social aspects of how the nation’s coasts are changing. This document has three sections. The first section provides background information about the project. The second section features descriptions of social indicators and depictions of social indicator data for 1970, 1980, 1990, and 2000, and changes from 1970 to 2000 for all North Carolina coastal counties. The third section contains three case studies describing changes in select social attributes for subsets of counties. (PDF contains 67 pages)
Resumo:
Sets and catches of Atlantic menhaden, Brevoortia tyrannus, made in 1985-96 by purse-seine vessels from Virginia and North Carolina were studied by digitizing and analyzing Captain's Daily Fishing Reports (CDFR's), daily logs of fishing activities completed by captains of menhaden vessels. 33,674 CDFR's were processed, representing 125,858 purse-seine sets. On average, the fleet made 10,488 sets annually. Virginia vessels made at least one purse-seine set on 67%-83% of available fishing days between May and December. In most years, five was the median number of sets attempted each fishing day. Mean set duration ranged from 34 to 43 minutes, and median catch per set ranged from 15 to 30 metric tons (t). Spotter aircraft assisted in over 83% of sets overall. Average annual catch in Chesapeake Bay (149,500 t) surpassed all other fishing areas, and accounted for 52% of the fleet's catch. Annual catch from North Carolina waters (49,100 t) ranked a distant second. Fishing activity in ocean waters clustered off the Mid-Atlantic states in June-September, and off North Carolina in November-January. Delaware Bay and the New Jersey coast were important alternate fishing grounds during summer. Across all ocean fishing areas, most sets and catch occurred within 3 mi. of shore, but in Chesapeake Bay about half of all fishing activity occurred farther offshore. In Virginia, areas adjacent to fish factories tended to be heavily fished. Recent regulatory initiatives in various coastal states threaten the Atlantic menhaden fleet's access to traditional nearshore fishing grounds. (PDF file contains 26 pages.)
Resumo:
We compared numbers of strikes, proportions of fish that hooked up after strikes, proportions of fish that stayed on hook (retained) after hook up, and numbers of fish caught between circle and J hooks rigged with dead natural fish bait (ballyhoo)and trolled for three oceanic predator species: dolphinfish (Coryphaena hippurus), yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri). Interactions were compared between circle and J hooks fished on 75 trips by two user groups (charter and recreational fishermen). Hooks were affixed to three species-specific leader types most commonly fished in this region: monofilament (dolphinfish), fluorocarbon (tuna), and wire (wahoo). Numbers of fish caught per trip and three potential mechanisms that might inf luence numbers caught (i.e., number of strikes, proportion of fish hooked, and proportion retained) were modeled with generalized linear models that considered hook type, leader type, species, user (fishing) group, and wave height as main effects. Hook type was a main effect at the catch level; generally, more fish were caught on J hooks than on circle hooks. The effect of hook type on strike rates was equivocal. However, J hooks had a greater proportion of hook-ups than did circle hooks. Finally, the proportion of fish retained once hooked was generally equal between hook types. We found similar results when data from additional species were pooled as a “tuna” group and a “mackerel” group. We conclude that J hooks are more effective than circle hooks at the hook-up level and result in greater numbers of troll-caught dolphinfish, tunas
Resumo:
Diet, gastric evacuation rates, daily ration, and population-level prey demand of bluefin tuna (Thunnus thynnus) were estimated in the continental shelf waters off North Carolina. Bluefin tuna stomachs were collected from commercial fishermen during the late fall and winter months of 2003–04, 2004–05, and 2005–06. Diel patterns in mean gut fullness values were used to estimate gastric evacuation rates. Daily ration determined from mean gut fullness values and gastric evacuation rates was used, along with bluefin tuna population size and residency times, to estimate population-level consumption by bluefin tuna on Atlantic menhaden (Brevoortia tyrannus). Bluefin tuna diet (n= 448) was dominated by Atlantic menhaden; other teleosts, portunid crabs, and squid were of mostly minor importance. The time required to empty the stomach after peak gut fullness was estimated to be ~20 hours. Daily ration estimates were approximately 2% of body weight per day. At current western Atlantic population levels, bluefin tuna predation on Atlantic menhaden is minimal compared to predation by other known predators and the numbers taken in commercial harvest. Bluefin tuna appear to occupy coastal waters in North Carolina during winter to prey upon Atlantic menhaden. Thus, changes in the Atlantic menhaden stock status or distribution would alter the winter foraging locations of bluefin
Resumo:
Age, growth, and reproductive data were obtained from dolphinfish (Coryphaena hippurus, size range: 89 to 1451 mm fork length [FL]) collected between May 2002 and May 2004 off North Carolina. Annual increments from scales (n=541) and daily increments from sagittal otoliths (n=107) were examined; estimated von Bertalanffy parameters were L∞ (asymptotic length)=1299 mm FL and k (growth coefficient)=1.08/yr. Daily growth increments reduced much of the residual error in length-at-age estimates for age-0 dolphinfish; the estimated average growth rate was 3.78 mm/day during the first six months. Size at 50% maturity was slightly smaller for female (460 mm FL) than male (475 mm FL) dolphinfish. Based on monthly length-adjusted gonad weights, peak spawning occurs from April through July off North Carolina; back-calculated hatching dates from age-0 dolphinfish and prior reproductive studies on the east coast of Florida indicate that dolphinfish spawning occurs year round off the U.S. east coast and highest levels range from January through June. No major changes in length-at-age or size-at-maturity have occurred since the early 1960s, even after substantial increases in fishery landings.
Resumo:
Gravid Atlantic menhaden, Brevoortia tyrannus, are available along the central coast of North Carolina during the fall and are harvested by the purse-seine fleet from the port of Beaufort. Virtually all of the catch, sexually immature fish included, is reduces to fish meal, fish oil, and fish solubles; however, minor quantities of roe from ripening female menhaden are extracted for local consupmtion. Routine and selective port sampling information was used to characterize the seasonal and biostatistical nautre of the roe menhaden catches at Beaufort. Fishermen recognize two size classes of roe Atlantic menhaden: "forerunners," which are usually the smallest and earliest adult menhaden encountered in the Fall Fishery, and "mammy shad," which are the largest menhaden harvested and produce the greatest roe yields. Roe is extracted from femal fish at various points along the reduction process stream and by several techniques. Vessel cremen and factory personnel extract menhaden roe for personal and local consumption. Undetermined quantities of menhaden roe are channeled into local retail seafood markets. Wholesale prices are about $20 per gallon of roe, while retail prices are about $5 per pound. Carteret County, North Carolina, is probably the only area on the U.S. Atlantic and Gulf coasts where menhaden roe is sold in retail seafood markets. The potential of extracting menhaden roe for foreign markets is discussed