53 resultados para Naval Ships.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. Photo caption: The tide rises 20 feet at high tide; at low tide the boats are used as stores to market goods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. Photo notation: These are most economical in handling concrete but not so elastic as the cable way method (ca. 1914)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. (1 pamphlet; 15 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On April 4-5, 2002, the PICES MONITOR Task Team, the PICES Continuous Plankton Recorder (CPR) Advisory Panel, and the Exxon Valdez Oil Spill Trustee Council’s Gulf Ecosystem Monitoring (GEM) program convened a workshop in Seattle, U.S.A., to consider enhanced instrumentation for volunteer observing ships (VOS), particularly instruments to complement CPR data. (PDF contains 44 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper deals with the trophic relationships of the communities of the coastal fishing area of Mar del Plata (Argentine). Different trophic levels of two main food chains (pelagic-demersal and benthic-demersal)were established. There are connections between both chains through certain species of invertebrates and fishes. This first try to establish the trophic relationships of our most important littoral communities, aims to set the preliminary bases for future energetic flow studies through the trophic web that gives a real economic importance to this productive area. (Document contains 45 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is an identification guide for cetaceans (whales, dolphins, and porpoises), that was designed to assist laymen in identifying cetaceans encountered in eastern North Pacific and Arctic waters. It was intended for use by ongoing cetacean observer programs. This is a revision of an earlier guide with the same title published in 1972 by the Naval Undersa Center and the National Marine Fisheries Service. It includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices include illustrations of tags on whales, dolphins, and porpoises, by Larry Hobbs; how to record data from observed cetaceans at sea and for stranded cetaceans; and a list of cetacean names in Japanese and Russian. (Document contains 245 pages - file takes considerable time to open)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)