38 resultados para National Accident Summary.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

NOAA’s National Status and Trends Program (NS&T) collected oyster tissue and sediments for quantification of polycyclic aromatic hydrocarbons (PAHs) and petroleum associated metals before and after the landfall of oil from the Deepwater Horizon incident of 2010. These new pre- and post- landfall measurements were put into a historical context by comparing them to data collected in the region over three decades during Mussel Watch monitoring. Overall, the levels of PAHs in both sediment and oysters both pre- and post-landfall were within the range of historically observed values for the Gulf of Mexico. Some specific sites did have elevated PAH levels. While those locations generally correspond to areas in which oil reached coastal areas, it cannot be conclusively stated that the contamination is due to oiling from the Deepwater Horizon incident at these sites due to the survey nature of these sampling efforts. Instead, our data indicate locations along the coast where intensive investigation of hydrocarbon contamination should be undertaken. Post-spill concentrations of oil-related trace metals (V, Hg, Ni) were generally within historically observed ranges for a given site, however, nickel and vanadium were elevated at some sites including areas in Mississippi Sound and Galveston, Terrebonne, Mobile, Pensacola, and Apalachicola Bays. No oyster tissue metal body burden exceeded any of the United States Food and Drug Administration’s (FDA) shellfish permissible action levels for human consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This volume summarizes the results of three workshops organized by the PICES-GLOBEC Climate Change and Carrying Capacity Program that were held just prior to the PICES Seventh Annual Meeting in Fairbanks, Alaska, in October 1998. These workshops represent the efforts of the REX, MODEL, and MONITOR Task Teams to integrate the results of national GLOBEC and GLOBEC-like programs to arrive at a better understanding of the ways in which climate change affects North Pacific ecosystems. (PDF contains 91 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: This cruise report is a summary of a field survey conducted within the Stellwagen Bank National Marine Sanctuary (SBNMS), located between Cape Cod and Cape Ann at the mouth of Massachusetts Bay. The survey was conducted June 14 – June 21, 2008 on NOAA Ship NANCY FOSTER Cruise NF-08-09-CCEHBR. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SBNMS using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, marine mammals, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SBNMS, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results are anticipated to be of value in supporting goals of the SBNMS and National Marine Sanctuary Program aimed at the characterization, protection, and management of sanctuary resources (pursuant to the National Marine Sanctuary Reauthorization Act) as well as a new priority of NCCOS and NOAA to apply Ecosystem Based approaches to the Management of coastal resources (EBM) through Integrated Ecosystem Assessments (IEAs) conducted in various coastal regions of the U.S. including the Northeast Atlantic continental shelf. This was a multi-disciplinary partnership effort made possible by scientists from the following organizations:  NOAA, National Ocean Service (NOS), National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), Charleston, SC.  U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Atlantic Ecology Division (GED), Narragansett, RI.  U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Gulf Ecology Division (GED), Gulf Breeze, FL.  U.S. Geological Survey (USGS), National Wetlands Research Center, Gulf Breeze Project Office, Gulf Breeze, FL.  NOAA, Office of Marine and Aviation Operations (OMAO), NOAA ship Nancy Foster. (31pp) (PDF contains 58 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: The Connectivity Colloquium evolved from an exhortation by Dan Basta, Director of the National Marine Sanctuary Program, to come together and assess what we know about the condition of our natural resources, identify information gaps and how to fill them, and transform science and management from an emphasis on documentation to a nexus for action. This purpose in some ways reflects the initiation of the Florida Keys National Marine Sanctuary itself, which was designated by an act of the U.S. Congress in 1990 in the aftermath of the 1989 Exxon Valdez oil spill in Alaska and three major ship groundings of the Florida Reef Tract in late 1989. Over the next seven years NOAA worked with federal, state, and local partners to develop a comprehensive management plan for the Sanctuary implemented under a co-trustee partnership between NOAA and the State of Florida. (PDF contains 270 pages; 14Mb)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report outlines the potential impacts of coastal protection structures on the resources of the Monterey Bay National Marine Sanctuary. At least 15 miles of the Sanctuary’s 300-mile shoreline are currently armored with seawalls and riprap revetments. Most of these coastal protection structures are placed above the mean high tide line, the official boundary of the Sanctuary, yet some influences of armoring impinge on the marine realm and on recreational use. In addition, continued sea level rise and accompanying coastal retreat will force many of these structures below the high tide line over time. The Monterey Bay National Marine Sanctuary staff has recognized the significance of coastal armoring, identifying it as a critical issue in the Coastal Armoring Action Plan of the draft Joint Management Plan. This summary is intended to provide general background information for Sanctuary policies on coastal armoring. The impacts discussed include: aesthetic depreciation, beach loss due to placement, access restriction, loss of sand supply from eroding cliffs, passive erosion, and active erosion. In addition, the potential biological impacts are explored. Finally, an appraisal of how differing armor types compare in relation to impacts, expense and engineering is presented. While the literature cited in this report focus predominantly on the California coast, the framework for this discussion could have implications for other actively eroding coastlines. (PDF contains 26 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Central California, and elsewhere around the world, a great deal of discussion is occurring about the use of marine protected areas (MPAs) as a tool to help manage marine resources. This discussion is taking place because there is growing evidence that humans have depleted marine resources in many parts of the world, often despite strong regulatory efforts. Moreover, there is also mounting evidence that the degradation of marine resources began long ago, and we do not fully realize how much humans have altered “natural” environments. This uncertainty has led people to discuss the use of MPAs as a precautionary tool to prevent depletion or extinction of marine resources, and as a means of redressing past damages. The discussion about the use of marine reserves is increasing in intensity in California because several resource management agencies are considering reserves as they create or revise management plans. Often, the discussions surrounding this important public policy debate lead to questions about the biological or ecological value of existing marine protected areas. More than 100 MPAs exist along the coast of California. Many of these were established arbitrarily and lack specific purposes. Some California marine protected areas also have co-occurring or overlapping boundaries, have conflicting designations for use, and have conflicting rules and regulations. Because few of the existing marine protected areas have clearly articulated goals or objectives, however, it is difficult or impossible to evaluate their ecological effectiveness. (PDF contains 18 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Second National Workshop on Marine Mammal Research and Monitoring in the National Marine Sanctuaries was held on 28 November 1999 in Maui, Hawaii. The workshop preceded the Thirteenth Biennial Conference on the Biology of Marine Mammals, and provided an opportunity to review and promote marine mammal research and monitoring in the National Marine Sanctuaries (NMS). The purpose of the workshop was to bring together researchers and sanctuary staff and to improve marine mammal research and monitoring throughout the sanctuaries. Discussion topics included: potential multi-sanctuary projects, sources of funding for multi-sanctuary projects, services and equipment for researchers through the sanctuaries, consolidating small levels of funding, help in funding and support for writing up data, publishing documents in Technical Memoranda, and letters of support. Representatives from the NMS national office and nine sanctuaries provided participants with overviews of marine mammal research within the sanctuaries. Presentations were also given by representatives from the National Marine Fisheries Service’s Permits and Health and Stranding programs. During the breakout working groups, there were several comments and suggestions consistent among each of the groups to improve marine mammal research. Each group emphasized the need to improve communication among researchers and to better share data. These suggestions included web-based information networks, advisory panels, and workshops. Regionally based research projects were also emphasized. In order to best study marine mammal populations, collaborative studies must take place throughout multiple sanctuaries. In order to achieve these large scale studies, funding and staffing must be directed towards these studies and distributed among each of the sanctuaries so that they may all be able to have the staffing, equipment, and vessels necessary to achieve a collaborative, ecosystem-based, regional marine mammal monitoring program. It will take several years to achieve all of the suggestions from the workshop, but thanks to the workshop participants, the National Marine Sanctuary Program has begun to direct marine mammal research and monitoring in order to achieve the goals of the workshop. This document provides a summary of the workshop with a focus on key points/main issues. We have included contact information intended to encourage continued collaboration among the individuals and organizations represented at the 1999 Marine Mammal Research and Monitoring in the National Marine Sanctuaries Workshop. (PDF contains 71 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-management is typically known to be a resource management system that shares managerial responsibility between the state and other stakeholders of a resource. In the case of Lake Victoria, one would expect the state to be represented by the fisheries departments of Kenya, Uganda and Tanzania, while stakeholder groups may comprise fishing communities, fish processing factories and municipalities. Taking that into account, the survey's objectives were defined as: (a) To identify the difficulties and impracticalities inherent in implementing state-based regulations via a "top-down" management strategy. (b) To assess the prevalence of community-based institutions that either seek to regulate the fishery or have the potential to be used to regulate it. (c) To identify ways in which community-based regulatory and monitory systems may be established, and how these will fare over time. (d) To identify roles for national Fisheries Departments, industrial fish processors and other stakeholders. (e) To develop well-founded policy suggestions for the establishment of a co-management framework to manage the fisheries of Lake Victoria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report summarises the routine monitoring surveys carried out in the River Lune and River Duddon estuaries during 1992. Data includes salinity, chloride, pH, nutrients and heavy metals.