11 resultados para Model basic science research
Resumo:
Nowadays, risks arising from the rapid development of oil and gas industries are significantly increasing. As a result, one of the main concerns of either industrial or environmental managers is the identification and assessment of such risks in order to develop and maintain appropriate proactive measures. Oil spill from stationary sources in offshore zones is one of the accidents resulting in several adverse impacts on marine ecosystems. Considering a site's current situation and relevant requirements and standards, risk assessment process is not only capable of recognizing the probable causes of accidents but also of estimating the probability of occurrence and the severity of consequences. In this way, results of risk assessment would help managers and decision makers create and employ proper control methods. Most of the represented models for risk assessment of oil spills are achieved on the basis of accurate data bases and analysis of historical data, but unfortunately such data bases are not accessible in most of the zones, especially in developing countries, or else they are newly established and not applicable yet. This issue reveals the necessity of using Expert Systems and Fuzzy Set Theory. By using such systems it will be possible to formulize the specialty and experience of several experts and specialists who have been working in petroliferous areas for several years. On the other hand, in developing countries often the damages to environment and environmental resources are not considered as risk assessment priorities and they are approximately under-estimated. For this reason, the proposed model in this research is specially addressing the environmental risk of oil spills from stationary sources in offshore zones.
Resumo:
Caspian Sea with its unique characteristics is a significant source to supply required heat and moisture for passing weather systems over the north of Iran. Investigation of heat and moisture fluxes in the region and their effects on these systems that could lead to floods and major financial and human losses is essential in weather forecasting. Nowadays by improvement of numerical weather and climate prediction models and the increasing need to more accurate forecasting of heavy rainfall, the evaluation and verification of these models has been become much more important. In this study we have used the WRF model as a research-practical one with many valuable characteristics and flexibilities. In this research, the effects of heat and moisture fluxes of Caspian Sea on the synoptic and dynamical structure of 20 selective systems associated with heavy rainfall in the southern shores of Caspian Sea are investigated. These systems are selected based on the rainfall data gathered by three local stations named: Rasht, Babolsar and Gorgan in different seasons during a five-year period (2005-2010) with maximum amount of rainfall through the 24 hours of a day. In addition to synoptic analyses of these systems, the WRF model with and without surface flues was run using the two nested grids with the horizontal resolutions of 12 and 36 km. The results show that there are good consistencies between the predicted distribution of rainfall field, time of beginning and end of rainfall by the model and the observations. But the model underestimates the amounts of rainfall and the maximum difference with the observation is about 69%. Also, no significant changes in the results are seen when the domain and the resolution of computations are changed. The other noticeable point is that the systems are severely weakened by removing heat and moisture fluxes and thereby the amounts of large scale rainfall are decreased up to 77% and the convective rainfalls tend to zero.
Resumo:
Cymo andreossyi is found both in the live and dead branching corals of coral Pacillopora, Acropora and Montipora. Compared to the occurrence its compatriot C. melanodactylus, this species found in large numbers. The relationship is mutualistic, with the species occupying a niche similar to that occupied by the more colorful Trapezia species.
Resumo:
Labroides dimidiatus, is one of several species of cleaner wrasses found on coral reefs from Eastern Africa and the Red Sea to French Polynesia, for the first time from Iran (Persian Gulf, Kish Island). Like other cleaner wrasses, it eats parasites and dead tissue off larger fishes’ skin in a mutualistic relationship that provides food and protection for the wrasse, and considerable health benefits for the other fishes. Some fish mimic cleaner wrasses. For example, a species of blenny called Aspidontus taeniatus has evolved the same behavior to tear small pieces of flesh from bigger fish. Cleaner wrasses are usually found at cleaning stations. Cleaning stations are occupied by different units of cleaner wrasses, such as a group of youths, a pair of adults, or a group of females accompanied by a dominant male. When visitors come near the cleaning stations, the cleaner wrasses greet the visitors by performing a dance-like motion in which they move their rear up and down. The visitors are referred to as "clients". Blue streak cleaner wrasses clean to consume ectoparasites on client fish for food. The bigger fish recognise them as cleaner fish because they have a lateral stripe along the length of their bodies and by their movement patterns.
Resumo:
The Striped Catfish can be recognized by its striped coloration, barbels around the mouth, and its body shape which tapers to a point posteriorly. Small juveniles are black and large adults may be less distinctly striped. Plotosus lineatus can reach a maximum length of 32 cm (13 in) and about 40cm in Persian Gulf. The body is brown with cream-colored or white longitudinal bands. The most striking feature of this species is in the fins; in fact the second dorsal, caudal and anal are fused together as in eels. In the rest of the body is quite similar to a freshwater catfish: the mouth is surrounded by four pairs of barbells, four on the upper jaw and four on the lower jaw. The first dorsal and each of the pectoral fins have a highly venomous spine. They may even be fatal. Juveniles of P. lineatus form dense ball-shaped schools of about 100 fish, while adults are solitary or occur in smaller groups of around 20 and are known to hide under ledges during the day. Adult P. lineatus search and stir the sand incessantly for crustaceans, mollusks, worms, and sometimes fish. Striped eel catfish is an oviparous fish; this species has demersal eggs and planktonic larvae. This species has evolved long ampullary canals in its electrosensory organs.
Resumo:
Electric rays, thought to be the most primitive of the skates and rays, have stout tails but have rather expansive disc. This group is distinguished by the presence of powerful electric organs, derived from branchial muscles in head region. Torpedo sinuspersici found inshore in sandy bottoms, and well offshore from the surf zone down to 200 m. Also on or near coral reefs (like Kish Island in Persian Gulf). Common in shallow sandy areas. Occasionally hooked by anglers, more often seen by divers; can deliver a strong shock. Flesh is edible. T. sinuspersici can survive for hours after being stranded on the beach. Little is known of the life history of the Gulf torpedo. It is a sluggish predator of bony fishes. At night it actively hunts for food, sculling slowly through the water about a meter above the bottom; during the day it usually rests on the bottom and opportunistically ambushes unwary prey. It uses its broad pectoral fins to envelop the target fish before delivering an electric shock to stun it. Usually solitary, they may form groups during the mating season. Reproduction is a placental viviparous, with the developing embryos initially surviving on their yolk sacs, and then on enriched uterine fluid produced by the mother. Litters of 9-22 young are birthed in the summer. Newborns measure about 10 cm wide; males mature at a disc width of 39 cm and females at 45 cm.
Resumo:
Chrysiptera unimaculata, an algivorous species also living on the coral reef flat and being territorial but not considered as a strict farmer in this location. Maximum length is 8 cm in Persian Gulf. It is living in close association with macrophytes. Adults are found solitarily or in small groups among coastal algal reefs, rubble or over open beach-rock of reef flats exposed to moderate surge and feeds mainly on benthic algae. C. unimaculata is oviparous, distinct pairing during breeding. Eggs are demersal and adhere to the substrate. Males guard and aerate the eggs.
Resumo:
Many aquarists know this fish as Ambylgobius hectori but accepted name is actually Koumansetta hectori. K. hectori, Hector's goby, is a species of goby native to the Indian Ocean (including the Red Sea), first record from Persian Gulf (Kish Island, Iran) to the islands of Micronesia in the western Pacific Ocean. It can be found on sheltered coral reefs at depths of from 3 to 30 meters (though usually between 5 to 20 meters). This species reaches a length of 8.5 centimeters (3.3 in) SL. This attractive little fish measures only 2” at maturity and spends its time hovering over rocks and substrates out in the open water column. Known for their bold yellow stripes, peaceful disposition, the diminutive Hector’s Goby is a nano reef favorite. It can also be found in the aquarium trade.
Resumo:
Boloceroides spp. are looking like an untidy mop, this anemone is sometimes seen in sea grass areas on many of our shores. It is possibly seasonal. Sometimes, large numbers are seen (up to 10-20 animals in a trip) and then none at all. Tiny swimming anemones may sometimes be confused with Sea grass anemones which have translucent tentacles with tiny spots. The swimming anemone harbors symbiotic single-celled algae (zooxanthellae). The algae undergo photosynthesis to produce food from sunlight. The food produced is shared with the sea anemone, which in return provides the algae with shelter and minerals. The oral disk and tentacle muscles are used to obtain, retain, and ingest prey; in Boloceroides spp. tentacles can autotomize if it is needed to evade a predator. Tentacles can control body form by use of their endodermal muscles. Retractors are longitudinal muscles that will aid in withdrawing tentacles and the oral disk if they are exposed to the open air. This hypothesis is furthered because in comparison to other sea anemones, Boloceroides is loosely attached to its respective substrate, thus allowing the pedal disk to detach quickly resulting in a rapid swimming response. Boloceroides can reproduce both sexually and asexually. As Anthozoans, Boloceroides produce sexually by bypassing the medusa life cycle stage; this allows Boloceroides (and all Anthozoans) to release their egg and sperm creating planula a bilaterally symmetrical, flattened, ciliated, motile larva.
Resumo:
Pempheris vanicolensis has reported for the first time from Persian Gulf (Kish Island). Various aspects of the biology of P. vanicolensis Cuvier & Valenciennes, a recent Lessepsian (Suez Canal) immigrant into the Mediterranean, are given. Red Sea and Mediterranean populations were compared, and the results indicate that the spawning season is shortened in the Mediterranean, continuing from April to September, as opposed to year-round in the Red Sea. Descriptions of a ripe ovary and post-larva from the Mediterranean are given. Individuals reach a mean size of 10.8 cm in their first year, and 14.4 cm in the second year. Little change has occurred in the diet of the immigrant population, and both populations feed nocturnally, chiefly on larval and adult stages of planktonic crustaceans. Direct underwater observations on the diurnal behavior of the species show that the fish leave their daytime cave shelter at sunset, congregate at a nearby site and then migrate inshore and disperse into small groups to feed. Before dawn, they reassemble at the cave's entrance, and finally enter it at sunrise, after the school has built up. Observations on Persian Gulf sweepers show that the fish are segregated into size groups, ranging 15–18 cm adults at depths of 3 m.
Resumo:
Observations of Caspian Sea during August - September 1995 are used to develop a three dimensional numerical for calculating temperature and current. This period was chosen because of extensive set of observational data including surface temperature observations. Data from the meteorological buoy network on Caspian Sea are combined with routine observation at first order synoptic station around the lake to obtain hourly values of wind stress and pressure fields. Initial temperature distribution as a function of depth and horizontal coordinates are derived from ship cruises. The model has variable grid resolution and horizontal smoothing which filters out small scale vertical motion. The hydrodynamic model of Caspian Sea has 6 vertical levels and a uniform horizontal grid size of 50 km The model is driven with surface fluxes of heat and momentum derived from observed meteorological. The model was able to reproduce all of the basic feature of the thermal structure in Caspian sea and: larger scale circulation patterns tend to be cyclone, with cyclone circulation with each sub basin. Result has agreement with observations.