22 resultados para Liouvillean, thermal equilibrium, return to equilibrium
Resumo:
In selecting an excess temperature at which to operate a power plant cooling system it has been customary to consider only thermal stresses and to use the ratio of the number of organisms killed to the number of organisms entrained. This frequently leads to the selection of a low excess temperature, AT, which, in turn, requires a large volume flow of cooling water. When mortalities due to physical and chemical stresses are included and the total number of entrained organisms killed is taken as the measure of the environmental damage, it becomes evident that the choice of a low excess temperature is seldom, if ever, best.
Resumo:
This paper describes some characteristic features of the phytoplankton of Grasmere, one of the smaller of the principal lakes of the English Lake District, and attempts to relate these to distinctive physical and chemical properties of the lake. Quantitative data presented herein are derived from 5-m vertical column samples, collected with a flexible polyethylene hose close to the deepest point of Grasmere, generally at intervals of 14 days ( 7 days from 1972 to 1978, inclusive). The study concludes that although Grasmere has been subject to increased phosphorus-loading and has quickly developed many features associated with eutrophication, the composition of its plankton has retained the characteristics of a mesotrophic, soft-water lake: a vernal diatom maximum, generally dominated by Asterionella, is followed by summer growths of nanoplanktonic species, of various colonial Chlorophyceae, before a substantial return to Asterionella-dominance in the autumn.
Resumo:
The role of life-history theory in population and evolutionary analyses is outlined. In both cases general life histories can be analysed, but simpler life histories need fewer parameters for their description. The simplest case, of semelparous (breed-once-then-die) organisms, needs only three parameters: somatic growth rate, mortality rate and fecundity. This case is analysed in detail. If fecundity is fixed, population growth rate can be calculated direct from mortality rate and somatic growth rate, and isoclines on which population growth rate is constant can be drawn in a ”state space” with axes for mortality rate and somatic growth rate. In this space density-dependence is likely to result in a population trajectory from low density, when mortality rate is low and somatic growth rate is high and the population increases (positive population growth rate) to high density, after which the process reverses to return to low density. Possible effects of pollution on this system are discussed. The state-space approach allows direct population analysis of the twin effects of pollution and density on population growth rate. Evolutionary analysis uses related methods to identify likely evolutionary outcomes when an organism's genetic options are subject to trade-offs. The trade-off considered here is between somatic growth rate and mortality rate. Such a trade-off could arise because of an energy allocation trade-off if resources spent on personal defence (reducing mortality rate) are not available for somatic growth rate. The evolutionary implications of pollution acting on such a trade-off are outlined.
Resumo:
This paper provides the first description of the mangrove cockle, Anadara spp., fisheries throughout their Latin American range along the Pacific coast from Mexico to Peru. Two species, A. tuberculosa and A. grandis, are found over the entire range, while A. similis occurs from El Salvador to Peru. Anadara tuberculosa is by far the most abundant, while A. grandis has declined in abundance during recent decades. Anadara tuberculosa and A. similis occur in level mud sediments in mangrove swamps, comprised mostly of Rhizophora mangle, which line the main-lands and islands of lagoons, whereas A. grandis inhabits intertidal mud flats along the edges of the same mangrove swamps. All harvested cockles are sexually mature. Gametogenesis of the three species occurs year round, and juvenile cockles grow rap-idly. Cockle densities at sizes at least 16–42 mm long ranged from 7 to 24/m2 in Mexico. Macrofaunal associates of cockles include crustaceans, gastropods, and finfishes. The mangrove swamps are in nearly pristine condition in every country except Honduras, Ecuador, and Peru, where shrimp farms constructed in the 1980’s and 1990’s have destroyed some mangrove zones. In addition, Hurricane Mitch destroyed some Honduran mangrove swamps in 1998. About 15,000 fishermen, including men, women, and children, harvest the cockles. Ecuador has the largest tabulated number of fishermen, 5,055, while Peru has the fewest, 75. Colombia has a large number, perhaps exceeding that in Ecuador, but a detailed census of them has never been made. The fishermen are poor and live a meager existence; they do not earn sufficient money to purchase adequate food to allow their full health and growth potential. They travel almost daily from their villages to the harvesting areas in wooden canoes and fiberglass boats at low tide when they can walk into the mangrove swamps to harvest cockles for about 4 h. Harvest rates, which vary among countries owing to differences in cockle abundances, range from about 50 cockles/fisherman/day in El Salvador and Honduras to 500–1,000/ fisherman/day in Mexico. The fishermen return to their villages and sell the cockles to dealers, who sell them mainly whole to market outlets within their countries, but there is some exporting to adjacent countries. An important food in most countries, the cockles are eaten in seviche, raw on the half-shell, and cooked with rice. The cockles are under heavy harvesting pressure, except in Mexico, but stocks are not yet being depleted because they are harvested at sizes which have already spawned. Also some spawning stocks lie within dense mangrove stands which the fishermen cannot reach. Consumers fortunately desire the largest cockles, spurning the smallest. Cockles are important to the people, and efforts to reduce the harvests to prevent overfishing would lead to severe economic suffering in the fishing communities. Pro-grams to conserve and improve cockle habitats may be the most judicious actions to take. Preserving the mangrove swamps intact, increasing their sizes where possible, and controlling cockle predators would lead to an increase in cockle abundance and harvests. Fishes that prey on juvenile cockles might be seined along the edges of swamps before the tide rises and they swim into the swamps to feed. Transplanting mangrove seedlings to suitable areas might increase the size of those habitats. The numbers of fishermen may increase in the future, because most adults now have several children. If new fishermen are tempted to harvest small, immature cockles and stocks are not increased, minimum size rules for harvestable cockles could be implemented and enforced to ensure adequate spawning.
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
Mangalore is a port city situated in the west coast state of Karnataka in India. The city hosts both large-scale and small-scale fisheries along its coastline. Traditionally, fishermen catch the product and sell it at a daily auction in the harbour to women vendors, who thereafter transport the goods to the market for commercial sale. The trade starts early in the morning, when the fishermen return to the harbour from their nightly fishing.
Resumo:
Preface [pdf, 0.01 Mb] James J. O'Brien The big picture - The ENSO of 1997-98 [pdf, 0.01 Mb] James E. Overland, Nicholas A. Bond & Jennifer Miletta Adams Atmospheric anomalies in 1997: Links to ENSO? [pdf, 0.54 Mb] Vladimir I. Ponomarev, Olga Trusenkova, Serge Trousenkov, Dmitry Kaplunenko, Elena Ustinova & Antonina Polyakova The ENSO signal in the northwest Pacific [pdf, 0.47 Mb] Robert L. Smith, A. Huyer, P.M. Kosro & J.A. Barth Observations of El Niño off Oregon: July 1997 to present (October 1998) [pdf, 1.31 Mb] Patrica A. Wheeler & Jon Hill Biological effects of the 1997-1998 El Niño event off Oregon: Nutrient and chlorophyll distributions [pdf, 1.13 Mb] William T. Peterson Hydrography and zooplankton off the central Oregon coast during the 1997-1998 El Niño event [pdf, 0.26 Mb] William Crawford, Josef Cherniawsky, Michael Foreman & Peter Chandler El Niño sea level signal along the west coast of Canada [pdf, 1.25 Mb] Howard J. Freeland & Rick Thomson The El Niño signal along the west coast of Canada - temperature, salinity and velocity [pdf, 0.49 Mb] Frank A. Whitney, David L. Mackas, David W. Welch & Marie Robert Impact of the 1990s El Niños on nutrient supply and productivity of Gulf of Alaska waters [pdf, 0.06 Mb] Craig McNeil, David Farmer & Mark Trevorrow Dissolved gas measurements at Stn. P4 during the 97-98 El Niño [pdf, 0.13 Mb] Kristen L.D. Milligan, Colin D. Levings & Robert E. DeWreede Data compilation and preliminary time series analysis of abundance of a dominant intertidal kelp species in relation to the 1997/1998 El Niño event [pdf, 0.05 Mb] S.M. McKinnell, C.C. Wood, M. Lapointe, J.C. Woodey, K.E. Kostow, J. Nelson & K.D. Hyatt Reviewing the evidence that adult sockeye salmon strayed from the Fraser River and spawned in other rivers in 1997 [pdf,0.03 Mb] G.A. McFarlane & R.J. Beamish Sardines return to British Columbia waters [pdf, 0.34 Mb] Ken H. Morgan Impact of the 1997/98 El Niño on seabirds of the northeast Pacific [pdf, 0.06 Mb] Thomas C. Royer & Thomas Weingartner Coastal hydrographic responses in the northern Gulf of Alaska to the 1997-98 ENSO event [pdf, 0.76 Mb] John F. Piatt, Gary Drew, Thomas Van Pelt, Alisa Abookire, April Nielsen, Mike Shultz & Alexander Kitaysky Biological effects of the 1997/98 ENSO in Cook Inlet, Alaska [pdf, 0.22 Mb] H.J. Niebauer The 1997-98 El Niño in the Bering Sea as compared with previous ENSO events and the "regime shift" of the late 1970s [pdf, 0.10 Mb] A.S. Krovnin, G.P. Nanyushin, M.Yu. Kruzhalov, G.V. Khen, M.A. Bogdanov, E.I. Ustinova, V.V. Maslennikov, A.M. Orlov, B.N. Kotenev, V.V. Bulanov & G.P. Muriy The state of the Far East seas during the 1997/98 El Niño event [pdf, 0.15 Mb] Stacy Smith & Susan Henrichs Phytoplankton collected by a time-series sediment trap deployed in the southeast Bering Sea during 1997 [pdf, 0.21 Mb] Cynthia T. Tynan Redistributions of cetaceans in the southeast Bering Sea relative to anomalous oceanographic conditions during the 1997 El Niño [pdf, 0.02 Mb] Akihiko Yatsu, Junta Mori, Hiroyuki Tanaka, Tomowo Watanabe, Kazuya Nagasawa, Yikimasa Ishida, Toshimi Meguro, Yoshihiko Kamei & Yasunori Sakurai Stock abundance and size compositions of the neon flying squid in the central North Pacific Ocean during 1979-1998 [pdf, 0.11 Mb] O.B. Feschenko A new point of view concerning the El Niño mechanism [pdf, 0.01 Mb] Nathan Mantua 97/98 Ocean climate variability in the northeast Pacific: How much blame does El Niño deserve? [pdf, 0.01 Mb] Vadim P. Pavlychev Sharp changes of hydrometeorological conditions in the northwestern Pacific during the 1997/1998 El Niño event [pdf, 0.01 Mb] Jingyi Wang Predictability and forecast verification of El Niño events [pdf, 0.01 Mb] (Document contains 110 pages)
Resumo:
Based on the recovery rates for Thalassia testudinum measured in this study for scars of these excavation depths and assuming a linear recovery horizon, we estimate that it would take ~ 6.9 years (95% CI. = 5.4 to 9.6 years) for T. testudinum to return to the same density as recorded for the adjacent undisturbed population. The application of water soluble fertilizers and plant growth hormones by mechanical injection into the sediments adjacent to ten propellor scars at Lignumvitae State Botanical Site did not significantly increase the recovery rate of Thalassia testudinum or Halodule wrightii. An alternative method of fertilization and restoration of propellor scars was also tested by a using a method of “compressed succession” where Halodule wrightii is substituted for T. testudinum in the initial stages of restoration. Bird roosting stakes were placed among H.wrightii bare root plantings in prop scars to facilitate the defecation of nitrogen and phosphorus enriched feces. In contrast to the fertilizer injection method, the bird stakes produced extremely high recovery rates of transplanted H. wrightii. We conclude that use of a fertilizer/hormone injection machine in the manner described here is not a feasible means of enhancing T. testudinum recovery in propellor scars on soft bottom carbonate sediments. Existing techniques such as the bird stake approach provide a reliable, and inexpensive alternative method that should be considered for application to restoration of seagrasses in these environments. Document contains 40 pages)
Resumo:
This technical memorandum documents the design, implementation, data preparation, and descriptive results for the 2006 Annual Economic Survey of Federal Gulf Shrimp Permit Holders. The data collection was designed by the NOAA Fisheries Southeast Fisheries Science Center Social Science Research Group to track the financial and economic status and performance by vessels holding a federal moratorium permit for harvesting shrimp in the Gulf of Mexico. A two page, self-administered mail survey collected total annual costs broken out into seven categories and auxiliary economic data. In May 2007, 580 vessels were randomly selected, stratified by state, from a preliminary population of 1,709 vessels with federal permits to shrimp in offshore waters of the Gulf of Mexico. The survey was implemented during the rest of 2007. After many reminder and verification phone calls, 509 surveys were deemed complete, for an ineligibility-adjusted response rate of 90.7%. The linking of each individual vessel’s cost data to its revenue data from a different data collection was imperfect, and hence the final number of observations used in the analyses is 484. Based on various measures and tests of validity throughout the technical memorandum, the quality of the data is high. The results are presented in a standardized table format, linking vessel characteristics and operations to simple balance sheet, cash flow, and income statements. In the text, results are discussed for the total fleet, the Gulf shrimp fleet, the active Gulf shrimp fleet, and the inactive Gulf shrimp fleet. Additional results for shrimp vessels grouped by state, by vessel characteristics, by landings volume, and by ownership structure are available in the appendices. The general conclusion of this report is that the financial and economic situation is bleak for the average vessels in most of the categories that were evaluated. With few exceptions, cash flow for the average vessel is positive while the net revenue from operations and the “profit” are negative. With negative net revenue from operations, the economic return for average shrimp vessels is less than zero. Only with the help of government payments does the average owner just about break even. In the short-term, this will discourage any new investments in the industry. The financial situation in 2006, especially if it endures over multiple years, also is economically unsustainable for the average established business. Vessels in the active and inactive Gulf shrimp fleet are, on average, 69 feet long, weigh 105 gross tons, are powered by 505 hp motor(s), and are 23 years old. Three-quarters of the vessels have steel hulls and 59% use a freezer for refrigeration. The average market value of these vessels was $175,149 in 2006, about a hundred-thousand dollars less than the average original purchase price. The outstanding loans averaged $91,955, leading to an average owner equity of $83,194. Based on the sample, 85% of the federally permitted Gulf shrimp fleet was actively shrimping in 2006. Of these 386 active Gulf shrimp vessels, just under half (46%) were owner-operated. On average, these vessels burned 52,931 gallons of fuel, landed 101,268 pounds of shrimp, and received $2.47 per pound of shrimp. Non-shrimp landings added less than 1% to cash flow, indicating that the federal Gulf shrimp fishery is very specialized. The average total cash outflow was $243,415 of which $108,775 was due to fuel expenses alone. The expenses for hired crew and captains were on average $54,866 which indicates the importance of the industry as a source of wage income. The resulting average net cash flow is $16,225 but has a large standard deviation. For the population of active Gulf shrimp vessels we can state with 95% certainty that the average net cash flow was between $9,500 and $23,000 in 2006. The median net cash flow was $11,843. Based on the income statement for active Gulf shrimp vessels, the average fixed costs accounted for just under a quarter of operating expenses (23.1%), labor costs for just over a quarter (25.3%), and the non-labor variable costs for just over half (51.6%). The fuel costs alone accounted for 42.9% of total operating expenses in 2006. It should be noted that the labor cost category in the income statement includes both the actual cash payments to hired labor and an estimate of the opportunity cost of owner-operators’ time spent as captain. The average labor contribution (as captain) of an owner-operator is estimated at about $19,800. The average net revenue from operations is negative $7,429, and is statistically different and less than zero in spite of a large standard deviation. The economic return to Gulf shrimping is negative 4%. Including non-operating activities, foremost an average government payment of $13,662, leads to an average loss before taxes of $907 for the vessel owners. The confidence interval of this value straddles zero, so we cannot reject, with 95% certainty, that the population average is zero. The average inactive Gulf shrimp vessel is generally of a smaller scale than the average active vessel. Inactive vessels are physically smaller, are valued much lower, and are less dependent on loans. Fixed costs account for nearly three quarters of the total operating expenses of $11,926, and only 6% of these vessels have hull insurance. With an average net cash flow of negative $7,537, the inactive Gulf shrimp fleet has a major liquidity problem. On average, net revenue from operations is negative $11,396, which amounts to a negative 15% economic return, and owners lose $9,381 on their vessels before taxes. To sustain such losses and especially to survive the negative cash flow, many of the owners must be subsidizing their shrimp vessels with the help of other income or wealth sources or are drawing down their equity. Active Gulf shrimp vessels in all states but Texas exhibited negative returns. The Alabama and Mississippi fleets have the highest assets (vessel values), on average, yet they generate zero cash flow and negative $32,224 net revenue from operations. Due to their high (loan) leverage ratio the negative 11% economic return is amplified into a negative 21% return on equity. In contrast, for Texas vessels, which actually have the highest leverage ratio among the states, a 1% economic return is amplified into a 13% return on equity. From a financial perspective, the average Florida and Louisiana vessels conform roughly to the overall average of the active Gulf shrimp fleet. It should be noted that these results are averages and hence hide the variation that clearly exists within all fleets and all categories. Although the financial situation for the average vessel is bleak, some vessels are profitable. (PDF contains 101 pages)
Resumo:
Dr. Charles M. Breder participated on the 1934 expedition of the Atlantis from Woods Hole, Massachusetts to Panama and back and kept a field diary of daily activities. The Atlantis expedition of 1934, led by Prof. A. E. Parr, was a milestone in the history of scientific discovery in the Sargasso Sea and the West Indies. Although naturalists had visited the Sargasso Sea for many years, the Atlantis voyage was the first attempt to investigate in detailed quantitative manner biological problems about this varying, intermittent ‘false’ bottom of living, floating plants and associated fauna. In addition to Dr. Breder, the party also consisted of Dr. Alexander Forbes, Harvard University and Trustee of the Woods Hole Oceanographic Institution (WHOI); T. S. Greenwood, WHOI hydrographer; M. D. Burkenroad, Yale University’s Bingham Laboratory, carcinology and Sargasso epizoa; M. Bishop, Peabody Museum of Natural History, Zoology Dept., collections and preparations and H. Sears, WHOI ichthyologist. The itinerary included the following waypoints: Woods Hole, the Bermudas, Turks Islands, Kingston, Colon, along the Mosquito Bank off of Nicaragua, off the north coast of Jamaica, along the south coast of Cuba, Bartlett Deep, to off the Isle of Pines, through the Yucatan Channel, off Havana, off Key West, to Miami, to New York City, and then the return to Woods Hole. During the expedition, Breder collected rare and little-known flying fish species and developed a method for hatching and growing flying fish larvae. (PDF contains 48 pages)
Resumo:
Stranded marine mammals have long attracted public attention. Those that wash up dead are, for all their value to science, seldom seen by the public as more than curiosities. Animals that are sick, injured, orphaned or abandoned ignite a different response. Generally, public sentiment supports any effort to rescue, treat and return them to sea. Institutions displaying marine mammals showed an early interest in live-stranded animals as a source of specimens -- in 1948, Marine Studios in St. Augustine, Florida, rescued a young short-finned pilot whale (Globicephala macrorhynchus), the first ever in captivity (Kritzler 1952). Eventually, the public as well as government agencies looked to these institutions for their recognized expertise in marine mammal care and medicine. More recently, facilities have been established for the sole purpose of rehabilitating marine mammals and preparing them for return to the wild. Four such institutions are the Marine Mammal Center (Sausalito, CA), the Research Institute for Nature Management (Pieterburen, The Netherlands), the RSPCA, Norfolk Wildlife Hospital (Norfolk, United Kingdom) and the Institute for Wildlife Biology of Christian-Albrects University (Kiel, Germany).(PDF contains 68 pages.)
Resumo:
ENGLISH: The spawning of Pacific northern bluefin tuna, Thunnus thynnus, takes place only in the western Pacific Ocean (WPO), but substantial numbers of the juveniles migrate to the eastern Pacific Ocean (EPO), where they remain for several months, or longer, and the.n return to the WPO. Lengthfrequency and tagging data show that many bluefin arrive in the EPO as 1-and 2-year olds, and remain there for one or two fishing seasons before returning to the WPO. The proportion of the fish which make the west-to-east migration varies among years. The numbers of 1-, 2-, 3-, 4, and >4 –year olds in the catches of the EPO are estimated for most years of the 1952-1991 period. SPANISH: EI desove del atun aleta azul del norte del Pacifico, Thunnus thynnus, ocurre solamente en el Océano Pacifico occidental (WPO), pero números substanciales de los juveniles migran al Océano Pacifico oriental (OPO), donde permanecen unos meses, 0 mas, antes de regresar al WPO. Datos de marcado y frecuencia de talla indican que muchos aletas azules llegan al OPO a 1 o 2 anos de edad, y permanecen alIi una 0 dos temporadas de pesca antes de regresar al WPO. La proporcion de los peces que migra del oeste al este varia entre anos. Se estima el numero de peces de 1, 2, 3, 4, Y>4 anos de edad en las capturas del OPO para la mayoria de los anos del periodo de 1952-1991. (PDF contains 40 pages.)
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
Popular articles about the Atlantic salmon (Salmo salar) usually state that ‘the Atlantic salmon is an anadromous species’, e.g. publications by the Atlantic Salmon Federation (North America), Atlantic Salmon Trust (UK), and WWF (World Wildlife Fund), and the life history is depicted as migration of juveniles from fresh water to the marine environment, with a return to where the fish were born as spawning adults. This article reviews the life history tactics of Atlantic salmon in Newfoundland.