54 resultados para Lima, Alceu Amoroso, 1893-1983
Resumo:
(PDF contains 112 pages.)
Resumo:
The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)
Resumo:
Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)
Resumo:
This document is in Spanish. El Anuario Estadístico de Pesca 1983 es una publicacion del Gobierno Federal, realizada por la Secretaría de Pesca, con la que se dá cumplimiento a 10 establecido en su Reglamento Interior y se participa en el Sistema Nacional de Informaci6n Estadística. Los 13 capitulos que integran este Anuario constituyen la cobertura básica de las distintas fases de la actividad pesquera, de las técnicasy de los medios en ella utilizados y de los resultados obtenidos en los diferentes procesos que conforman el esfuerzo nacional pesquero. Catch statistics for Mexican waters 1983. (PDF has 286 pages.)
Resumo:
We present data on ichthyoplankton distribution, abundance, and seasonality and supporting environmental information for four species of coastal pelagics from the family Carangidae: blue runner Caranx crysos, Atlantic bumper Chloroscombrus chrysurus, round scad Decapterus punctatus, and rough scad Trachurus lathami. Data are from 1982 and 1983 cruises off Louisiana sponsored by the Southeastern Area Monitoring and Assessment Program (SEAMAP). Bioprofiles on reproductive biology, early life history, meristics, adult distribution, and fisheries characteristics are also presented for these species. Maximum abundances of larval blue runner, Atlantic bumper, and round scad were found in July inside the 4O-m isobath, although during the rest of the cruises these species were rarely found together. Larval Atlantic bumper were captured in June and July only; blue runner in May, June, and July; and round scad in all seasons. Atlantic bumper larvae, concentrated mostly off western Louisiana, were by far the most abundant carangid in 1982 and 1983. Larval blue runner were the second most abundant summer-spawned carangid in 1982 and 1983, but their abundance and depth distribution varied considerably between years. Relative abundance of larval round scad off Louisiana was low, and they were captured only west of the Mississippi River delta, although they are reported to dominate carangid populations in the eastern Gulf of Mexico. Rough scad were primarily winter/spring and outer-shelf (40-182 m) spawners. They ranked third in overall abundance, but were the most abundant target carangid on the outer shelf. Ecological parameters such as surface salinity, temperature, and station depth are presented from capture sites for recently hatched larvae <2.5 mm notochord length, except round scad) as well as for all sizes of fish below 14 mm standard length. (PDF file contains 44 pages.)
Resumo:
We present data on ichthyoplankton distribution, abundance, and seasonality and supporting environmental information for four species of coastal pelagics from the family Clupeidae: round herring Etrumeus teres, scaled sardine Harengula jaguana, Atlantic thread herring Opisthonema oglinum, and Spanish sardine Sardinella aurita. Data are from 1982 and 1983 cruises across the northern Gulf of Mexico sponsored by the Southeastern Area Monitoring and Assessment Program (SEAMAP). This is the first such examination for these species on a multiyear and gulfwide scale. Bioproflles on reproductive biology, early life history, meristics, adult distribution, and fisheries characteristics are also presented for these species. During the summer, larval Atlantic thread herring and scaled and Spanish sardines were abundant on the inner shelf <40 m depth), but were rare or absent in deeper waters. Scaled sardine and thread herring were found virtually everywhere inner-shelf waters were sampled, but Spanish sardines were rare in the north-central Gulf. During 1982, larval Atlantic thread herring were the most abundant of the four target c1upeid species, whereas Spanish sardine were the most abundant during 1983. On the west Florida shelf, Spanish sardine dominated larval c1upeid populations both years. Scaled sardine larvae were the least abundant of the four species both years, but were still captured in 25% of inner-shelf bongo net collections. Round herring larvae, collected February-early June (primarily March-April), were abundant on the outer shelf (40-182 m depth) and especially off Louisiana. Over the 2-year period, outer-shelf mean abundance for round herring was 40.2 larvae/10 m2; inner-shelf mean abundances for scaled sardine, Atlantic thread herring, and Spanish sardine were 14.9, 39.2, and 41.9 larvae/l0 m2, respectively. (PDF file contains 66 pages.)
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 79 pages.)
Resumo:
In the Ukraine there are several thousand large, medium and small lakes and lake-like reservoirs, distinguished by origin, salinity, regional position, productivity and by construction a significant number of large and small water bodies, ponds and industrial reservoirs of variable designation. The problem of national systems necessitates the creation of specific schemes and classifications. Classifying into specific types of reservoir by means of suitable specifications is required for planning national measures with the objective of the rational utilisation of natural resources. It is now necessary to consider the present-day characteristics of Ukranian lakes. In the case of the Ukraine it is possible to use two approaches - genetical and ecological. This paper uses the genetical system to classify the lake-like water bodies of the Ukraine.
Resumo:
ENGLISH: The Inter-American Tropical Tuna Commission operates under the authority and direction of a convention originally entered into by the Republic of Costa Rica and the United States of America. The convention, which came into force in 1950, is open to adherence by other governments whose nationals fish for tropical tunas in the eastern Pacific Ocean. Under this provision Panama adhered in 1953, Ecuador in 1961, the United Mexican States in 1964, Canada in 1968, Japan in 1970 and France and Nicaragua in 1973. Ecuador withdrew from the Commission in 1968, Mexico in 1978, and Costa Rica in 1979. On October 19 and 20, the Commission held its 41st meeting in Ottawa, Canada. SPANISH: La Comisión Interamericana del Atún Tropical funciona bajo la autoridad y dirección de un convenio establecido originalmente por la República de Costa Rica y los Estados Unidos de América. El convenio vigente desde 1950, está abierto a la afiliación de otros gobiernos cuyos ciudadanos pescan atún en el Pacífico oriental tropical. Bajo esta estipulación, Panamá se afilió en 1953, Ecuador en 1961, los Estados Unidos Mexicanos en 1964, Canadá en 1968, Japón en 1970, Francia y Nicaragua en 1973. Ecuador se retiró de la Comisión en 1968, México en 1978 y Costa Rica en 1979. Como se informó en el informe anual de la Comisión de 1978, la XXXVI reunión de la Comisión, convocada en Tokio (Japón) del 16 al 18 de octubre de 1978, fue suspendida sin haberse adoptado ninguna acción para fijar una cuota de atún aleta amarilla en 1979. La XLI reunión de la Comisión fue convocada en Ottawa (Canadá) del 19 al 20 de octubre de 1983. (PDF contains 272 pages.)
Resumo:
A number of authors have described the manner in which young salmonids, soon after emergence from the gravel, set up and defend territories. This leads to mortality or downstream displacement of the individuals which are unable to acquire territories and is widely accepted as the main method of population regulation amongst young salmonids. In some field experiments the fish were constrained in screened reaches and the option of downstream dispersal for the surplus fry was thus excluded. In order to explore some aspects of downstream dispersal more closely under conditions which gave more control than is obtained in a natural stream, four experimental channels were set up at Grassholme reservoir in Teesdale. The report describes the results of investigations on the timing and rate of downstream movement of young brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) out of experimental channels, with special reference to the effect of water velocity on the rate of ”emigration”.