46 resultados para Intensive agriculture
Resumo:
The effect of aquaculture, especially shrimp farming, on agriculture has caused heated debate among aquaculturists, agriculturists, and non-governmental organizations. As data on the negative impact of shrimp farming on adjacent rice fields are not available, a study was undertaken in rice fields skirting three shrimp farms: a semi-intensive farm; an extensive farm; and a semi-intensive farm with a buffer zone. The buffer zone was found to be helpful in preventing salinization of the adjacent agricultural fields and the Electrical Conductivity (EC) values (less than 1) reported were found to be harmless to the rice crop. Thus, aquaculture and agriculture can coexist in coastal areas if there are buffer zones in between.
Resumo:
Includes Exotic Mollusca in California, by G. Dallas Hanna p.298-321.(PDF contains 57 pages.)
Resumo:
Throughout the Asia-Pacific region capture fisheries and certain less intensive forms of aquaculture can and do play a vital role in livelihoods management, food security, and health and nutrition. Knowledge and experience exist that could be more effectively used in policy for poverty alleviation. (PDF contains 89 pages)
Adapting integrated agriculture aquaculture for HIV and AIDS-affected households: the case of Malawi
Resumo:
The WorldFish Center in conjunction with World Vision Malawi carried out a project to improve income and nutrition status of households affected by HIV and AIDS with funding from the World Bank. The project was implemented in Southern Malawi particularly in the West of Zomba District from July 2005 to June 2006. Through participatory approaches, the project identified constraints that limit HIV and AIDS affected households’ realisation of the benefits from fish farming and adapted technologies and practices for the affected beneficiaries to boost fish production and utilization. Specifically, the project sought (1) to identify the constraints that limit HIV and AIDS affected households to realise the benefits from fish farming and based on the constraints, (2) to adapt technologies and practices for use by the affected beneficiaries to boost fish production and utilization. (PDF cotains 17 pages)
Resumo:
The monthly and seasonal water requirements of a small fish pond (0.068ha; maximum capacity of 613.83m super(3)) at the University of Agriculture, Makurdi Fish Farm (Benue, Nigeria) were determined during the period of February to August 1996. The sources of water for the pond were rainfall, (103.4cm), run-off (6.3cm) and regulated inflow (95.0cm). The water loss for the period were Evapotranspiration, (106.74cm), Seepage (71.64cm) and regulated discharge (25.00cm). Evapotranspiration was identified as the main source of water loss while rainfall was the major source of water gain. The mean monthly water deficit was 24.56~c11.43cm while the mean monthly surplus was 9.84~c8.05cm. The quantity of water required to maintain the optimal water level in the pond was 474.00m super(3). Preliminary water budget of the study area showed that rainfed aquaculture can be effectively carried out at Makurdi during the months of June to October with supplementary inflows during the dry season months
Resumo:
A brief review of most of the publications by the author and other relevant workers on the three water-based fish culture systems was made. The present status of the culture systems in the National Food/Fish Programmes was highlighted. Strategies were advanced towards a successful implementation of the intensive water-based culture systems project as a contribution towards alleviating poverty, hunger and malnutrition under the concept of VISION 2010
Resumo:
The aim of the investigation is to know the percentage of fish meal required to support the best growth of Heterotis niloticus in a semi intensive pond culture system. To achieve this, feed was formulated with equal percentages of blood meal, and corn meal and varying levels of fish meal. The experiment was in four treatments. Results showed that the mean weight gained was directly proportional to the quantity of fish meal made available to the fish fence 31.58g, 33.79g, 45.15g and 51.24g were recorded for treatments I, II, III and IV respectively. Result from this study when compared with previous works, shows that size of the water body to a greater extent affects the growth. The availability of fish meal in the feed made it more acceptable to the fish and hence a commensurate conversion in to flesh. The analysis of variance showed that there is significant difference in the growth performance in the treatments
Resumo:
The purpose of the project is to improve our understanding about best management practices that can be utilized on diked managed wetlands in Suisun Marsh for reducing the occurrence of low dissolved oxygen (DO) and high methylmercury (MeHg) events associated primarily with fall flood-up practices. Low DO events are of concern because they can lead to undue stress and even mortality of sensitive aquatic organisms. Elevated MeHg levels are of concern because MeHg is a neurotoxin that bio-magnifies up the food chain and can cause deleterious effects to higher trophic level consumers such as piscivorous fish, birds, and mammals (including humans). This study involved two years (2007-2008) of intensive field data collection at two managed wetland sites in northwest Suisun Marsh and their surrounding tidal sloughs, an area with prior documented low DO events. In addition, the study collected limited soils and water quality field data and mapped vegetation for three managed wetland sites in the central interior of Suisun Marsh, for the purpose of examining whether wetlands at other locations exhibit characteristics that could indicate potential for similar concerns. In Year 1 of the study, the objective was to identify the baseline conditions in the managed wetlands and determine which physical management conditions could be modified for Year 2 to reduce low DO and MeHg production issues most effectively. The objective of Year 2 was to evaluate the effectiveness of these modified management actions at reducing production of low DO and elevated MeHg conditions within the managed wetlands and to continue improving understanding of the underlying biogeochemical processes at play. This Final Evaluation Memorandum examined a total of 19 BMPs, 14 involving modified water management operations and the remaining five involving modified soil and vegetation management practices. Some of these BMPs were previously employed and others have not yet been tested. For each BMP this report assesses its efficacy in improving water quality conditions and potential conflicts with wetland management. It makes recommendations for further study (either feasibility assessments or field testing) and whether to consider for future use. Certain previously used BMPs were found to be important contributors to poor water quality conditions and their continued use is not recommended. Some BMPs that could improve water quality conditions appear difficult to implement in regards to compatibility with wetland management; these BMPs require further elaboration and feasibility assessment to determine whether they should be field tested. In practice for any given wetland, there is likely a combination of BMPs that would together have the greatest potential to address the low DO and high MeHg water quality concerns. Consequently, this report makes no sweeping recommendations applicable to large groups of wetlands but instead promotes a careful consideration of factors at each wetland or small groups of wetlands and from that assessment to apply the most effective suite of BMPs. This report also identifies a number of recommended future actions and studies. These recommendations are geared toward improving the process understanding of factors that promote low DO and high MeHg conditions, the extent of these problems in Suisun Marsh, the regulatory basis for the DO standards for a large estuarine marsh, the economics of BMPs, and alternative approaches to BMPs on diked managed wetlands that may address the water quality issues. The most important of these recommendations is that future BMP implementation should be carried out within the context of rigorous scientific evaluation so as to gain the maximum improvement in how to manage these water quality issues in the diked managed wetlands of Suisun Marsh.
Resumo:
Despite the expenditure of huge amounts of money and human effort, the Green Revolution has largely failed to benefit the vast majority of the rural poor in Africa: those smallholding farmers who sell little, if any, of what they grow and rely almost entirely upon natural soil fertility, rainfall and traditional broodstock and seed varieties. New approaches on food production and income generation in the rural areas must be found if this sector of agricultural community is to be assisted. Integrated resources management (IRM) in general, and integrated agriculture-aquaculture (IAA) in particular, may offer some solutions in cases where the classical methods of improving farm output have failed and/or been unsustainable.
Resumo:
The article suggests a preliminary list of properties as a point of departure for quantifying various ecological facets of the integrated agriculture-aquaculture farms.
Resumo:
Some interesting ideas on improving the cost-effectiveness of feeding in semi-intensive finfish aquaculture are presented.
Resumo:
Malawi is a small but densely populated country in Southern Africa. Fish is an important part of the nutrition of Malawians, providing essential protein and micronutrients. However, per capita fish consumption has halved over the ten-year period between 1988 to 1998 due to over-fishing in the lakes and doubling of the population since the 1970s, accompanied by an increase in the price of fish. This has worsened access to food insecurity, especially in rural areas, in a country where an estimated 66 per cent of the population consume less than the minimum daily calorie requirement. This paper presents an ex-post impact assessment of the development and dissemination of smallscale integrated aquaculture-agriculture technologies by The WorldFish Center and its national and international partners over more than 15 years in Malawi. The impact study measures the effects of these outputs on the degree of integrated aquaculture-agriculture (IAA) technology adoption and diffusion, the effects on farm income and health of household members, and the welfare effects of increased fish supply on the Malawian economy.
Resumo:
The integration of agriculture and aquaculture as a means of intensifying resource use and improving the productivity of many current farming practices in Southeast Asian and African countries is discussed. A brief account is given of work undertaken by ICLARM in Malawi and India regarding the improved use of marginal lands to integrate crops, vegetables, trees, livestock and fish, outlining also the various problems involved in the extension of such integrated fish farming systems.