52 resultados para HABITAT DISTRIBUTION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ichthyofauna of the coastal «10 m depth) habitat of the South Atlantic Bight were investigated between Cape Fear, North Carolina, and the St. John's River, Florida. Trawl collections from four nonconsecutive seasons in the period July 1980 to December 1982 indicated that the fish community is dominated by the family Sciaenidae, particularly juvenile forms. Spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus) were the two most abundant species and dominated catches during all seasons. Atlantic menhaden (Brevoortin tyrannus) was also very abundant, but only seasonally (winter and spring) dominant in the catches. Elasmobranch fIShes, especially rajiforms and carcharinids, contributed to much of the biomass of fishes collected. Total fish abundance was greatest in winter and lowest in summer and was influenced by the seasonality of Atlantic menhaden and Atlantic croaker in the catches. Biomass was highest in spring and lowest in summer, and was influenced by biomass of spot. Fish density ranged from 321 individuals and 12.2 kg per hectare to 746 individuals and 25.2 kg per hectare. Most species ranged widely throughout the bight, and showed some evidence of seasonal migration. Species assemblages were dominated by ubiquitous year-round residents of the coastal waters of the bight. Diversity (H') was highest in summer, and appeared influenced by the evenness of distribution of individuals among species. (PDF file contains 56 pages.)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distribution, movements, and habitat use of small (<46 cm, juveniles and individuals of unknown maturity) striped bass (Morone saxatilis) were investigated with multiple techniques and at multiple spatial scales (surveys and tag-recapture in the estuary and ocean, and telemetry in the estuary) over multiple years to determine the frequency and duration of use of non-natal estuaries. These unique comparisons suggest, at least in New Jersey, that smaller individuals (<20 cm) may disperse from natal estuaries and arrive in non-natal estuaries early in life and take up residence for several years. During this period of estuarine residence, individuals spend all seasons primarily in the low salinity portions of the estuary. At larger sizes, they then leave these non-natal estuaries to begin coastal migrations with those individuals from nurseries in natal estuaries. These composite observations of frequency and duration of habitat use indicate that non-natal estuaries may provide important habitat for a portion of the striped bass population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the period from 2011 - 2015 with the aim of this study was to systematically review and in particular the revised classification of the Persian Gulf (and the Strait of Hormuz) and to obtain new information about the final confirmed list of fish species of Iranian waters of the Persian Gulf (and Hormuz Strait), samples of museums, surveys and sampling, and comparative study of all available sources and documentation was done. Classification systematic of sharks and batoids and bony fishes. Based on the results, the final list of approved fish of the Persian Gulf (including the Strait of Hormuz and Gulf of Oman border region) are 907 species in 157 families, of which 93 species of fish with 28 cartilaginous families (including 18 families with 60 species and 10 families with 34 species of shark and batoids); and 129 families with 814 species of bony fishes are. The presence of 11 new family with only one representative species in the area include Veliferidae, Zeidae, Sebastidae, Stomiidae, Dalatiidae, Zanclidae, Pempheridae, Lophiidae Kuhliidae, Etmoptridae and Chlorophthalmidae also recently introduced and approved. The two families based Creediidae Clinidae and their larvae samples for newly identified area. 62 families with mono-species and 25 families with more than 10 species are present including Gobiidae (53), Carangide (48), Labride (41), Blenniidae (34), Apogonidae (32) and Lutjanidae (31) of bony fishes, Carcharhinidae (26) of sharks and Dasyatidae (12) in terms of number of species of batoids most families to have their data partitioning. Also, 13 species as well as endemic species introduced the Persian Gulf and have been approved in terms of geographical expansion of the Persian Gulf are unique to the area.Two species of the family Poeciliidae and Cyprinodontidae have species of fresh water to the brackish coastal habitats have found a way;in addition to 11 types of families Carcharhinidae, Clupeidae, Chanidae, Gobidae, Mugilidae, Sparidae also as a species, with a focus on freshwater river basins in the south of the country have been found. In this study, it was found that out of 907 species have been reported from the study area, 294 species (32.4 %) to benthic habitats (Benthic habitats) and 613 species (67.6 %) in pelagic habitats (Pelagic habitats) belong. Coral reefs and rocky habitats in the range of benthic fish (129 species - 14.3 %) and reef associated fishes in the range of pelagic fishes (432 species – 47.8 %), the highest number and percentage of habitat diversity (Species habitats) have been allocated. As well as fish habitats with sea grass and algae beds in benthic habitat (17 species- 1.9 %) and pelagic - Oceanic (Open sea) in the whole pelagic fish (30 species – 3.3 %), the lowest number and percentage of habitat diversity into account. From the perspective of animal geography (Zoogeography) and habitat overlaps and similarities (Habitat overlapping) fish fauna of the Persian Gulf compared with other similar seas (tropical and subtropical, and warm temperate) in the Indian Ocean area - calm on the surface, based on the presence of certain species that the fish fauna of the Persian Gulf to the Red Sea and the Bay of Bengal (East Arabian Sea) compared to other regions in the Indian Ocean (Pacific) is closer (about 50%), and the Mediterranean (East area) and The Hawaiian Islands have the lowest overlap and similarity of habitat and species (about 10%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three areas in Rookery Bay, near Marco Island and Fakahatchee Bay were sampled from July 1971 through July 1972, and 1,006,640 individual animals were collected, of which the majority (55%) came from the Marco area. The large disparity between the catches at Marco and the remaining study areas was due mainly to the appearance of high numbers of species of polychaetes and echinoderms that were of very minor importance or absent from the catches in Rookery Bay and Fakahatchee Bay. When only the major classes of animals in the catch are considered (i.e., crustaceans, fish and mollusks) the total counts for Fakahatchee (298,830) and Marco (275,075) are quite comparable but both exceed Rookery Bay (119,388) by a considerable margin. The effects of the red tide outbreak in the summer of 1971 were apparently restricted to the Rookery Bay Sanctuary and may account for some of the observed differences. For the purposes of making controlled comparisons between the study areas, three common habitats were selected in each area so that a mud bottom habitat, a sand-shell bottom habitat and a vegetated bottom habitat were located in each of the study areas. Total catches by habitat types for crustaceans, fish and mollusks and certain of the more abundant species show clearly the overwhelming importance of the vegetated bottom as a habitat for animals. By habitat the vegetated areas had the most "indicator species" with five, the mud habitat was next with three and the sand-shell habitat third with two. Thus the vegetated habitat would be the best choice if a single habitat were to be used to detect environmental changes between study areas. (PDF contains 137 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This compendium presents information on the life history, diet, and abundance and distribution of 46 of the more abundant juvenile and small resident fish species, and data on three species of seagrasses in Florida Bay, Everglades National Park. Abundance and distribution of fish data were derived from three sampling schemes: (1) an otter trawl in basins (1984–1985, 1994–2001), (2) a surface trawl in basins (1984–1985), and (3) a surface trawl in channels (1984–1985). Results from surface trawling only included pelagic species. Collections made with an otter trawl in basins on a bi-monthly basis were emphasized. Nonparametric statistics were used to test spatial and temporal differences in the abundance of species and seagrasses. Fish species accounts were presented in four sections – Life history, Diet, Abundance and distribution, and Length-frequency distributions. Although Florida Bay is a subtropical estuary, the majority of fish species (76%) had warm-temperate affinities; i.e., only 24% were solely tropical species. The five most abundant species collected, in descending order, by (1) otter trawl in basins were: Eucinostomus gula, Lucania parva, Anchoa mitchilli, Lagodon rhomboides, and Syngnathus scovelli; (2) surface trawl in basins were: Hyporhamphus unifasciatus, Strongylura notata, Chriodorus atherinoides, Anchoa hepsetus, and Atherinomorus stipes; (3) surface trawl in channels were: Hypoatherina harringtonensis, A. stipes, A. mitchelli, H. unifasciatus, and C. atherinoides. (PDF file contains 219 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution, abundance, and length composition of marine finfish, lobster, and squid in Long Island Sound were examined relative to season and physical features of the Sound, using Connecticut Department of Environmental Protection trawl survey data collected from 1984 to 1994. The following are presented: seasonal distribution maps for 59 species, abundance indices for 41 species, and length frequencies for 26 species. In addition, a broader view of habitat utilization in the Sound was examined by mapping aggregated catches (total catch per tow, demersal catch per tow, and pelagic catch per tow) and by comparing species richness and mean aggregate catch/tow by analysis of variance (ANOVA) among eight habitat types defined by depth interval and bottom type. For many individual species, seasonal migration patterns and preference for particular areas within Long Island Sound were evident. The aggregate distribution maps show that overall abundance was lower in the eastern Sound than the central and western portions. Demersal and pelagic temporal abundance show opposite trends—demersals were abundant in spring and declined through summer and fall, whereas pelagic abundance was low in spring and increased into fall. The analysis of habitat types revealed significant differences for both species richness and mean catch per tow. Generally, species richness was highest in habitats within the central area of the Sound and lowest in eastern habitats. The aggregate mean catch was highest in the western and central habitats, and declined eastward. (PDF file contains 199 pages.)