22 resultados para Ghost teeth
Resumo:
Preliminary results show microradiography and scanning electron microscopy (SEM) to be more accurate methods of accessing growth layer groups (GLGs) in the teeth of Tursiops truncatus than transmitted light microscopy. Microradiography shows the rhythmic deposition of mineral as alternating radiopaque and radiolucent layers. It improves the resolution of GLGs near the pulp cavity in older individuals, better than either SEM or light microscopy. SEM of etched sections show GLGs as ridges and grooves which are easily counted from the micrograph. SEM also shows GLGs to be composed of fine incremental layers of uniform size and number which may allow for more precise age determination. Accessory layers are usually hypomineralized layers within the hypermineralized layer of the GLG and are more readily distinguishable as such in SEM of etched sections and microradiographs than in thin sections viewed under transmitted light. The neonatal line is hypomineralized, appearing translucent under transmitted light, radiolucent in a microradiograph, and as a ridge in SEM. (PDF contains 6 pages.)
Resumo:
Teeth were taken from 120 bottlenose dolphins, Tursiops truncatus, which had stranded on the mid-Atlantic coast of the United States. The number of annual growth layer groups (GLGs) for each animal was used to construct a growth curve. The growth rate of coastal North Atlantic Ocean Tursiops is similar to other cetaceans in having a high initial rate of growth, with no differences in growth between females and males. In females, the first dentinal GLG is thickest and is followed by GLGs which become progressively narrower. In males, the second GLG is thicker than the first; GLGs beyond number two become progressively smaller but at a slower rate than in females. In males and females, the translucent layer makes up proportionally larger parts of the GLG as the animal ages, but in males the percent translucent layer remains constant at about 50% while in females it continues to increase up to about 70% of the GLG. These two factors, GLGs width and translucent layer width, indicate that the sex and age of the animal influence the deposition of GLGs. Incremental layers are also present, averaging 12 per GLG, and seem similar to incremental layers described in other marine mammals. A plot of the relationship of percent growth of the last GLG to time of death suggests that the deposition of GLGs is relatively constant, at least during the first half of the year, and that North Atlantic Ocean Tursiops give birth in the fall as well as in the spring. (PDF contains 31 pages.)
Resumo:
This paper is an account of preparation and examination techniques and criteria used to estimate age in decalcified and stained tooth thin sections from spinner and spotted dolphins. A dentinal growth layer group (GLG), composed of two thin light and two thicker dark-stained layers, is deposited annually. The GLG component layers are variably visible, but the "ideal" pattern and successive thinning of dentinal GLGs are used as a guide to determine GLG limits. Age-specific thicknesses of dentinal GLGs found in Hawaiian spinner dolphin teeth seem to be applicable to teeth of spotted dolphins and can be used as an aid in locating GLG boundaries. Cementa1 GLGs are composed of a dark-stained and alightly stained layer and usually are deposited at a rate of one per year, but may be deposited every other year or two or three times per year. Two slightly different methods of counting dentinal GLGs are presented, along with guidelines for determining whether dentinal or cementa1 GLG counts provide the best estimate of age for a specimen. (PDF contains 23 pages.)
Resumo:
Ghost fishing is the term used to describe the continued capture of fish and other living organisms after a fisherman has lost all control over the gear. Traps may be lost for a variety of reasons including theft, vandalism, abandonment, interactions with other gear, fouling on the bottom (i.e., traps and ropes are caught on rocky substrate), bad weather, and human error (Laist, 1995). Annual trap loss can be as high as 20% to 50% of fished traps in some fisheries (Al-Masroori et al., 2004). Because lost traps can continue to fish for long periods, albeit with decreasing efficiency over time (e.g., Smolowitz, 1978; Breen, 1987, 1990; Guillory, 1993), ghost fishing is a concern in fisheries worldwide.
Resumo:
The use of growth layers in teeth as an indicator of age in odnotocetes and pinnipeds was suggested by Laws (1954) and since then the method has been used extensively in both marine and non-marine mammals. Dentinal growth layers are groups (growth layer groups) of repetitive alternating bands which in cross-section are similar to growth rings in trees. The most commonly used methods for counting growth layer groups (GLGs) are by undecalcified longitudinal thin sections (150 um) or decalcified and stained thin sections (10-30 um). In longitudinal sections viewed with light microscopy, GLGs appear as opaque and translucent cones nestled one inside another, with the oldest dentine Iying adjacent to the enamel, and the newest layer borderinq the pulp cavity.
Resumo:
We investigated within- and between-reader precision in estimating age for northern offshore spotted dolphins and possible effects on precision from the sex and age-class of specimens. Age was estimated from patterns of growth layer groups i n the dentine and cementum of the dolphins' teeth. Each specimen was aged at least three times by each of two persons. Two data samples were studied. The first comprised 800 of each sex from animals collected during 1973-78. The second included 45 females collected during 1981. There were significant, generally downward trends through time in the estimates from multiple readings of the 1973-78 data. These trends were slight, and age distributions from last readings and mean estimates per specimen appeared to be homogeneous. The largest factor affecting precision in the 1973-78 data set was between-reader variation. In light of the relatively high within-reader precision (trends considered), the consistent between-reader differences suggest a problem of accuracy rather than precision for this series. Within-reader coefficients of variation averaged approximately 7% and 11%. Pooling the data resulted i n an average coefficient of variation near 16%. Within- and between-reader precision were higher for the 1981 sample, and the data homogeneous over both factors. CVs averaged near 5% and 6% for the two readers. These results point to further refinements in reading the 1981 series. Properties of the 1981 sample may be partly responsible for greater precision: by chance there were proportionately fewer older dolphins included, and preparation and selection criteria were probably more stringent. (PDF contains 35 pages.)
Resumo:
Ghost shrimp and mud shrimp in the decapod infraorder Thalassinidea are ecologically important members of many benthic intertidal and shallow subtidal infaunal communities, largely due to the sediment filtration and mixing that result from their burrowing and feeding behavior. These activities considerably modify their immediate environment and have made these cryptic animals extremely interesting to scientists in terms of their behavior, ecology, and classification. Over 20 years ago, seven species of thalassinideans were known from the South Atlantic Bight (Cape Hatteras, NC to Cape Canaveral, FL). During this study, the examination of extensive collections from the National Museum of Natural History (NMNH), the Southeastern Regional Taxonomic Center (SERTC), and regional institutions, resulted in the identification of 14 species of thalassinideans currently known to occur within this region. The family Axiidae is represented by three species: Axius armatus, Calaxius jenneri, and Paraxiopsis gracilimana; the Callianassidae by six: Biffarius biformis, B. cf. fragilis, Callichirus major, Cheramus marginatus, Gilvossius setimanus, and Necallianassa berylae; the Calocarididae by two: Calocaris templemani and Acanthaxius hirsutimanus; and the families Laomediidae, Thomassiniidae, and Upogebiidae are each represented by one: Naushonia crangonoides, Crosniera wennerae, and Upogebia affinis, respectively. An illustrated key is presented for species level identification and supplemental notes on the ecology, distribution, and taxonomy of the species are provided.(PDF file contains 38 pages.)
Resumo:
Identification problems are common for many sharks due to a general lack of meristic characteristics that are typically useful for separating species. Other than number of vertebrae and number and shape of teeth, identifications are frequently based on external features that are often shared among species. Identification problems in the field are most prevalent when live specimens are captured and releasing them with a minimum of stress is a priority (e.g., shark tagging programs). Identifications must be accurate and conducted quickly but this can be challenging, especially if specimens are very active or too large to be landed without physical damage. This field guide was designed primarily for use during field studies and presents a simplified method for identifying the 21 species of western North Atlantic Ocean sharks belonging to the family Carcharhinidae (carcharhinids). To assist with identifications a dichotomous key to Carcharhinidae was developed, and for the more problematic Carcharhinus species (12 species), separation sheets based on important distinguishing features were constructed. Descriptive text and illustrations provided in the species accounts were developed from field observations, photographs, and published references. (PDF file contains 36 pages.)
Resumo:
Features of the valid nominal species of Aprionodon Gill (isodon Valenciennes) and Hypoprion Muller and Henle (hemiodon Valenciennes, macloti Muller and Henle, and signatus Poey), plus those of a previously unrecognized species here described as Carcharhinus leiodon n.sp., are examined and compared with those of Carcharhinus Blainville. Features studied include morphometrics, vertebral numbers and other vertebral characteristics, tooth numbers, color pattern, and some other aspects of external morphology. It is concluded that on these features C. leiodon n.sp. is entirely encompassed within the parameters of Carcharhinus, and that, although A. isodon, H. hemiodon, H. macloti, and H. signatus each extend the range of diversity of Carcharhinus in one or more features, A. isodon is not uniquely different from Carcharhinus, and there is no common pattern of difference between the three species of Hypoprion and Carcharhinus. Accordingly, and because the nature of the teeth of Aprionodon and Hypoprion has been found insufficient to warrant generic distinction from Carcharhinus, the genera Aprionodon and Hypoprion are synonymised with Carcharhinus. A diagnosis and description are given for each of the above species. The descriptions include measurements, counts, and line illustrations that show the whole shark in lateral view, underside of head, nostril, and teeth. The geographic distribution is summarized, as are also the meager biological data available on number of embryos, size at birth, size at sexual maturity, and maximum size. (PDF file contains 32 pages.)
Resumo:
This study indicates that 13 species of congrid larvae belonging to 8 genera occur in the eastern Pacific. The species are: Ariosoma gilberti; Paraconger californiensis; Paraconger sp.; P. dentatus; Chiloconger labiatus; Taenioconger digueti; T. canabus; Gorgasia punctata; G. obtusa; Gnathophis catalinensis; Hildebrandia nitens; Bathycongrus macrurus; and B. varidens. The morphological and anatomical changes undergone during metamorphosis are useful in the identification of the larvae. Larvae are distributed closer to the coastal waters, and are more common from January to May than from June to December. A key to the larvae was developed based on the myotomal counts, adult vertebral counts, pigmentation patterns, and the nature of the teeth and tail tip to distinguish the genera and species. This study shows that Garman's unidentified larvae, Atopichthys acus and A. cingulus, are two different larval stages of Ariosoma gilberti, and points out that Atopichthys dentatus and A. obtusus belong to Paraconger and Gorgasia, respectively. (PDF file contains 25 pages.)
Resumo:
Shellfish are a major but cheap protein source for human consumption as well as source of income for coastal towns and villages of the Niger Delta in Rivers State, Cross River, and Lagos States. A research into the nutritive value of some of these marine shellfish viz: bivalves (oyster - Crassostrea gasar and cockle - Anadara senilis); gastropods (periwinkle - Tympanotonus fuscatus, obtuse periwinkle - Semifusus morio and the giant whelk - Thais callifera) and mangrove crabs (green crab - Goniopsis pelli, ghost crab - Cardisoma ormatum, and common blue crab - Callinectes latimanus) was carried out to compare their quality and cost with beef, chicken meat, pork and egg in order to identify those most suitable for commercial culture. Results show that all shellfish had at least 16% crude protein except blue crab (13.38%). All shellfish had higher protein content than egg (13.36%). Cockle with protein content 25.47% compared favourably with beef, (29.60%). Beef, chicken meat and pork cost 11.50, 9.00 and 8.00 per kilo respectively while oyster, periwinkle and the common blue crab cost 3.50, 3.00, and 1.50 per kilo respectively. Oysters and Cockles are recommended for commercial culture based on the findings of this research
Resumo:
Results from long-term investigations on biomanipulation show that indirect effects are at least as important as direct effects are for the stability of biomanipulation. Three types of indirect effects can be distinguished: (1) a change in quantity or quality of the resource base, (2) behavioural change of the prey, and (3) development of anti-predator traits. Although indirect effects of type (2), (e.g. a change in the pattern of vertical migration of zooplankton), and type (3), (e.g. development of helmets and neck teeth in Daphnia), are important mechanisms, the most essential indirect effects regarding biomanipulation belong to type (1). An example of the latter will be demonstrated: the complex of indirect effects of enhanced grazing by large herbivores on the phosphorus metabolism of the lake. It is concluded that control of the indirect effects is absolutely necessary to stabilize biomanipulation measures, but this is much more difficult than the control of direct effects and needs deeper insights into the structuring mechanisms of food webs. Proper management of fish stocks, in combination with the control of phosphorus load and/or the physical conditions, seems to be the most promising way of controlling the indirect effects of biomanipulation.
Resumo:
Metal-framed traps covered with polyethylene mesh used in the fishery for the South African Cape rock lobster (Jasus lalandii) incidentally capture large numbers of undersize (<75 mm CL) specimens. Air-exposure, handling, and release procedures affect captured rock lobsters and reduce the productivity of the stock, which is heavily fished. Optimally, traps should retain legalsize rock lobsters and allow sublegal animals to escape before traps are hauled. Escapement, based on lobster morphometric measurements, through meshes of 62 mm, 75 mm, and 100 mm was investigated theoretically under controlled conditions in an aquarium, and during field trials. SELECT models were used to model escapement, wherever appropriate. Size-selectivity curves based on the logistic model fitted the aquarium and field data better than asymmetrical Richards curves. The lobster length at 50% retention (L50) on the escapement curve for 100-mm mesh in the aquarium (75.5 mm CL) approximated the minimum legal size (75 mm CL); however estimates of L50 increased to 77.4 mm in field trials where trapentrances were sealed, and to 82.2 mm where trap-entrances were open. Therfore, rock lobsters that cannot escape through the mesh of sealed field traps do so through the trap entrance of open traps. By contrast, the wider selection range and lower L25 of field, compared to aquarium, trials (SR = 8.2 mm vs. 2.6 mm; L25 =73.4 mm vs. 74.1 mm), indicate that small lobsters that should be able to escape from 100-mm mesh traps do not always do so. Escapement from 62-mm mesh traps with open entrance funnels increased by 40−60% over sealed traps. The findings of this study with a known size distribution, are related to those of a recent indirect (comparative) study for the same species, and implications for trap surveys, commercial catch rates, and ghost fishing are discussed.