22 resultados para Francis, Thomas, 1900


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report contains a chemical and biological characterization of sediments from the St. Thomas East End Reserves (STEER) in St. Thomas, U.S. Virgin Islands (USVI). The STEER Management Plan (published in 2011) identified chemical contaminants and habitat loss as high or very high threats and called for a characterization of chemical contaminants as well as an assessment of their effects on natural resources. The baseline information contained in this report on chemical contaminants, toxicity and benthic infaunal community composition can be used to assess current conditions, as well as the efficacy of future restoration activities. In this phase of the project, 185 chemical contaminants, including a number of organic (e.g., hydrocarbons and pesticides) and inorganic (e.g., metals) compounds, were analyzed from 24 sites in the STEER. Sediments were also analyzed using a series of toxicity bioassays, including amphipod mortality, sea urchin fertilization impairment, and the cytochrome P450 Human Reporter Gene System (HRGS), along with a characterization of the benthic infaunal community. Higher levels of chemical contaminants were found in Mangrove Lagoon and Benner Bay in the western portion of the study area than in the eastern area. The concentrations of polychlorinated biphenyls (PCBs), DDT (dichlorodiphenyltrichloroethane), chlordane, zinc, copper, lead and mercury were above a NOAA sediment quality guideline at one or more sites, indicating impacts may be present in more sensitive species or life stages in the benthic environment. Copper at one site in Benner Bay, however, was above a NOAA guideline indicating that effects on benthic organisms were likely. The antifoulant boat hull ingredient tributyltin, or TBT, was found at the third highest concentration in the history of NOAA’s National Status and Trends (NS&T) Program, which monitors the Nation’s coastal and estuarine waters for chemical contaminants and bioeffects. Unfortunately, there do not appear to be any established sediment quality guidelines for TBT. Results of the bioassays indicated significant sediment toxicity in Mangrove Lagoon and Benner Bay using multiple tests. The benthic infaunal communities in Mangrove Lagoon and Benner Bay appeared severely diminished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article outlines the development of freshwater science between 1900 and 2000 and in particular traces British contributions, both to a deepened knowledge of specifics and to their interrelation as environmental and ecological science. The author provides a selected bibliography of important publications relevant to the topic of the article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last century, the population of Pacific sardine (Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly different between spring and summer, indicating that they are representative of the entire stock. The results also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965), as a temporary employee of the British Columbia Provincial Fisheries Department, was assigned in 1914 to under-take full-time studies of the Pacific halibut, Hippoglossus stenolepis. The fishery was showing signs of depletion, so Thompson undertook the inquiry into this resource, the first intensive study on the Pacific halibut. Three years later, Thompson, working alone, had provided a basic foundation of knowledge for the subsequent management of this resource. He published seven land-mark papers on this species, and this work marked the first phase of a career in fisheries science that was to last nearly 50 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965), an early fishery biologist, joined the California Fish and Game Commission in 1917 with a mandate to investigate the marine fisheries of the state. He initiated studies on the albacore tuna, Thunnus alalunga, and the Pacific sardine, Sardinops sagax, as well as studies on other economically important marine organisms. Thompson built up a staff of fishery scientists, many of whom later attained considerable renown in their field, and he helped develop, and then direct, the commission’s first marine fisheries laboratory. During his tenure in California, he developed a personal philosophy of research that he outlined in several publications. Thompson based his approach on the yield-based analysis of the fisheries as opposed to large-scale environmental studies. He left the state agency in 1925 to direct the newly formed International Fisheries Commission (now the International Pacific Halibut Commission). William Thompson became a major figure in fisheries research in the United States, and particularly in the Pacific Northwest and Alaska, during the first half of the 20th cent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965), as a temporary employee of the British Columbia Provincial Fisheries Department, was assigned in 1914 to under-take full-time studies of the Pacific halibut, Hippoglossus stenolepis. The fishery was showing signs of depletion, so Thompson undertook the inquiry into this resource, the first intensive study on the Pacific halibut. Three years later, Thompson, working alone, had provided a basic foundation of knowledge for the subsequent management of this resource. He published seven land-mark papers on this species, and this work marked the first phase of a career in fisheries science that was to last nearly 50 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charles Henry Gilbert (1859-1928) was a pioneering ichthyologist who made major contributions to the study of fishes of the American West. As chairman of the Department ofZoology at Leland Stanford Junior University in Palo Alto, Calif., during 1891-1925, Gilbert was extremely devoted to his work and showed little patience with those ofa different mindset. While serving as Naturalist-in-Charge of the U.S. Fish Commission Steamer Albatross during her exploratory expedition to the Hawaiian Islands in 1902, Gilbert engaged in an acrimonious feud with the ship's captain, Chauncey Thomas, Jr. (1850-1919), U.S.N., over what Gilbert perceived to be an inadequate effort by the captain. This essay focuses on the conflict between two strong figures, each operatingf rom different world views, and each vying for authority. Despite the difficulties these two men faced, the voyage of the Albatross in 1902 must be considered a success, as reflected by the extensive biological samples collected, the many new species of animals discovered, and the resulting publication of important scientific papers.