18 resultados para Forecasts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hurricane Isabel made landfall as a Category 2 Hurricane on 18 September 2003, on the North Carolina Outer Banks between Cape Lookout and Cape Hatteras, then coursed northwestward through Pamlico Sound and west of Chesapeake Bay where it downgraded to a tropical storm. Wind damage on the west and southwest shores of Pamlico Sound and the western shore of Chesapeake Bay was moderate, but major damage resulted from the storm tide. The NOAA, National Ocean Service, National Centers for Coastal Ocean Sciences, Center for Coastal Fisheries and Habitat Research at Beaufort, North Carolina and the Center for Coastal Environmental Health and Biomedical Research Branch at Oxford, Maryland have hurricane preparedness plans in place. These plans call for tropical storms and hurricanes to be tracked carefully through NOAA National Weather Service (NWS) watches, warnings, and advisories. When a hurricane watch changes to a hurricane warning for the areas of Beaufort or Oxford, documented hurricane preparation plans are activated. Isabel exacted some wind damage at both Beaufort and Oxford. Storm tide caused damage at Oxford, where area-wide flooding isolated the laboratory for many hours. Storm tide also caused damage at Beaufort. Because of their geographic locations on or near the open ocean (Beaufort) or on or near large estuaries (Beaufort and Oxford), storm tide poses a major threat to these NOAA facilities and the safety of federal employees. Damage from storm surge and windblown water depends on the track and intensity of a storm. One tool used to predict storm surge is the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model of the NWS, which provides valuable surge forecasts that aid in hurricane preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pilot study was conducted to study the ability of an artificial neural network to predict the biomass of Peruvian anchoveta Engraulis ringens, given time series of earlier biomasses, and of environmental parameters (ocenographic data and predator abundances). Acceptable predictions of three months or more appear feasible after thorough scrutiny of the input data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hurricanes can cause extensive damage to the coastline and coastal communities due to wind-generated waves and storm surge. While extensive modeling efforts have been conducted regarding storm surge, there is far less information about the effects of waves on these communities and ecosystems as storms make landfall. This report describes a preliminary use of NCCOS’ WEMo (Wave Exposure Model; Fonseca and Malhotra 2010) to compute the wind wave exposure within an area of approximately 25 miles radius from Beaufort, North Carolina for estuarine waters encompassing Bogue Sound, Back Sound and Core Sound during three hurricane landfall scenarios. The wind wave heights and energy of a site was a computation based on wind speed, direction, fetch and local bathymetry. We used our local area (Beaufort, North Carolina) as a test bed for this product because it is frequently impacted by hurricanes and we had confidence in the bathymetry data. Our test bed conditions were based on two recent Hurricanes that strongly affected this area. First, we used hurricane Isabel which made landfall near Beaufort in September 2003. Two hurricane simulations were run first by passing hurricane Isabel along its actual path (east of Beaufort) and second by passing the same storm to the west of Beaufort to show the potential effect of the reversed wind field. We then simulated impacts by a hurricane (Ophelia) with a different landfall track, which occurred in September of 2005. The simulations produced a geographic description of wave heights revealing the changing wind and wave exposure of the region as a consequence of landfall location and storm intensity. This highly conservative simulation (water levels were that of low tide) revealed that many inhabited and developed shorelines would receive wind waves for prolonged periods of time at heights far above that found during even the top few percent of non-hurricane events. The simulations also provided a sense for how rapidly conditions could transition from moderate to highly threatening; wave heights were shown to far exceed normal conditions often long before the main body of the storm arrived and importantly, at many locations that could impede and endanger late-fleeing vessels seeking safe harbor. When joined with other factors, such as storm surge and event duration, we anticipate that the WEMo forecasting tool will have significant use by local emergency agencies and the public to anticipate the relative exposure of their property arising as a function of storm location and may also be used by resource managers to examine the effects of storms in a quantitative fashion on local living marine resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed GCM experiments using the National Meteorological Center's Medium Range Forecasting (MRF) model to study the skill of monthly forecasts during the Northern Hemisphere summer and to test the impact of sea surface temperature anomalies (SSTAs) on such forecasts. The daily skill varies a great deal. The skillful daily forecasts last from 5 to 8 days for the Southern Hemisphere and from 6 to 8 days for the Northern Hemisphere. SSTAs have positive impact on the forecasts in the tropics and surface variables, but the impact of tropical SSTAs on the extra-tropical circulation is, in general, positive but small. Overall, the initial conditions play a more important role than SSTAs in determining the forecast skill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each year, more than 500 motorized vessel groundings cause widespread damage to seagrasses in Florida Keys National Marine Sanctuary (FKNMS). Under Section 312 of the National Marine Sanctuaries Act (NMSA), any party responsible for the loss, injury, or destruction of any Sanctuary resource, including seagrass, is liable to the United States for response costs and resulting damages. As part of the damage assessment process, a cellular automata model is utilized to forecast seagrass recovery rates. Field validation of these forecasts was accomplished by comparing model-predicted percent recovery to that which was observed to be occurring naturally for 30 documented vessel grounding sites. Model recovery forecasts for both Thalassia testudinum and Syringodium filiforme exceeded natural recovery estimates for 93.1% and 89.5% of the sites, respectively. For Halodule wrightii, the number of over- and under-predictions by the model was similar. However, where under-estimation occurred, it was often severe, reflecting the well-known extraordinary growth potential of this opportunistic species. These preliminary findings indicate that the recovery model is consistently generous to Responsible Parties in that the model forecasts a much faster recovery than was observed to occur naturally, particularly for T. testudinum, the dominant seagrass species in the region and the species most often affected. Environmental setting (i.e., location, wave exposure) influences local seagrass landscape pattern and may also play a role in the recovery dynamics for a particular injury site. An examination of the relationship between selected environmental factors and injury recovery dynamics is currently underway. (PDF file contains 20 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Human Security Index (HIS) enumerating 200 countries was introduced in 2008. A community-level HSI is under development in the USA. Coastal communities face large disparities in components of human security. How can a HSI support improved policies/services (such as environmental or public health forecasts or warnings) for improving lives? Several issues are discussed. (PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the Millennium Ecosystem Assessment’s chapter “Coastal Systems” (Agardy and Alder 2005), 40% of the world population falls within 100 km of the coast. Agardy and Alder report that population densities in coastal regions are three times those of inland regions and demographic forecasts suggest a continued rise in coastal populations. These high population levels can be partially traced to the abundance of ecosystem services provided in the coastal zone. While populations benefit from an abundance of services, population pressure also degrades existing services and leads to increased susceptibility of property and human life to natural hazards. In the face of these challenges, environmental administrators on the coast must pursue agendas which reflect the difficult balance between private and public interests. These decisions include maintaining economic prosperity and personal freedoms, protecting or enhancing the existing flow of ecosystem services to society, and mitigating potential losses from natural hazards. (PDF contains 5 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health of the oceans and people are inextricably linked. For many years we focused research and policy on anthropogenic impacts to oceans and coasts. Recently we have started to think about how the health of the oceans affects us. In response to the Oceans and Human Health Act of 2004, a NOAA initiative was created to explore the “One Health” of the oceans and coasts. The Center of Excellence in Oceans and Human Health at Hollings Marine Laboratory (HML) is one of three Centers dedicated to understanding the connections and forecasting changes in ocean and coastal health and human health. The Center at HML is developing new tools and approaches, including sentinel habitats and sentinel species, to evaluate linkages between ecological process and human health and wellbeing. The results provide environmental and public health managers, policy-makers and communities forecasts and assessments to improve ecosystem-based management that protects health and mitigates risks for the oceans, coasts and people.(PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two approaches are used to estimate the economic impact of domestic wild shrimp, Penaeus sp., fishing in Terrebonne Parish, Louisiana. A 2002 survey of commercial shrimp fishermen in the Parish yields information on sales and operating costs, and results are used to estimate a 1-yr sales effect in the Parish of $36.7 to $128.1 million due to shrimp fishing. In addition, 2001 shrimp ticket sales data ($49.9 million) are input into a REMI (Regional Economic Models, Inc.) model built for the 4-parish bayou region of Louisiana. The REMI model forecasts a year 1 reduction in gross regional product (GRP) of $45.9 million in the 4-parish area if the shrimp fishing industry were to disappear in Terrebonne Parish, and an 8-yr cumulative negative impact on GRP in the bayou region of $191.3 million. Study limitations and suggestions for future research are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With its genesis in New England during the 1800's, the purse seine fishery for Atlantic menhaden, Brevoortia tyrannus, expanded south and by the early 1900's ranged the length of the eastern seaboard. The purse seine fishery for Gulf menhaden. B. patronus, is of relatively recent development, exploitation of the stock beginning in the late 1940's. Landings from both fisheries annually comprise 35-40% of the total U. S. fisheries landings, ranking menhaden first in terms of volume landed. Technological advances in harvesting methods, fish-spotting capabilities, and vessel designs accelerated after World War II, resulting in larger, faster, and wider-ranging carrier vessels, improved speed and efficiency of the harvest, and reduction in labor requirements. Chief products of the menhaden industry are fish meal, fish oil, and solubles, but research into new product lines is underway. Since 1955 on the Atlantic coast and 1964 on the Gulf coast, the NMFS has monitored the fisheries for biostatistical data. Annual data summaries of numbers-of-fish-at-age harvested, catch tonnage, and fishing effort of the fleet form the basis of routine stock assessments and annual catch forecasts to industry for the upcoming fishing season. After landings declined in the 1960's, the Atlantic menhaden stock has recovered through the 1970's and 1980's. Exceptional year classes of Gulf menhaden in recent years account for record landings during the 1980's.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

•The 2012 Inter-sessional Science Board Meeting: A Note from Science Board Chairman (pp. 1-4) ◾PICES Interns (p. 4) ◾2012 Inter-sessional Workshop on a Roadmap for FUTURE (pp. 5-8) ◾Second Symposium on “Effects of Climate Change on the World’s Oceans” (pp. 9-13) ◾2012 Yeosu Workshop on “Framework for Ocean Observing” (pp. 14-15) ◾2012 Yeosu Workshop on “Climate Change Projections” (pp. 16-17) ◾2012 Yeosu Workshop on “Coastal Blue Carbon” (pp. 18-20) ◾Polar Comparisons: Summary of 2012 Yeosu Workshop (pp. 21-23) ◾2012 Yeosu Workshop on “Climate Change and Range Shifts in the Oceans" (pp. 24-27) ◾2012 Yeosu Workshop on “Beyond Dispersion” (pp. 28-30) ◾2012 Yeosu Workshop on “Public Perception of Climate Change” (pp. 31, 50) ◾PICES Working Group 20: Accomplishments and Legacy (pp. 32-33) ◾The State of the Western North Pacific in the Second Half of 2011 (pp. 34-35) ◾Another Cold Winter in the Gulf of Alaska (pp. 36-37) ◾The Bering Sea: Current Status and Recent Events (pp. 38-40) ◾PICES/ICES 2012 Conference for Early Career Marine Scientists (pp. 41-43) ◾Completion of the PICES Seafood Safety Project – Indonesia (pp. 44-46) ◾Oceanography Improves Salmon Forecasts (p. 47) ◾2012 GEOHAB Open Science Meeting (p. 48-50) ◾Shin-ichi Ito awarded 2011 Uda Prize (p. 50)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

◾PICES Science in 2007 (pdf, 0.1 Mb) ◾2007 Wooster Award (pdf, 0.1 Mb) ◾FUTURE - A milestone reached but our task is not done (pdf, < 0.1 Mb) ◾International symposium on "Reproductive and Recruitment Processes of Exploited Marine Fish Stocks" (pdf, 0.1 Mb) ◾Recent results of the micronekton sampling inter-calibration experiment (pdf, 0.1 Mb) ◾2007 PICES workshop on "Measuring and monitoring primary productivity in the North Pacific" (pdf, 0.1 Mb) ◾2007 Harmful Algal Bloom Section annual workshop events (pdf, 0.1 Mb) ◾A global approach for recovery and sustainability of marine resources in Large Marine Ecosystems (pdf, 0.3 Mb) ◾Highlights of the PICES Sixteenth Annual Meeting (pdf, 0.4 Mb) ◾Ocean acidification of the North Pacific Ocean (pdf, 0.3 Mb) ◾Workshop on NE Pacific Coastal Ecosystems (2008 Call for Salmon Survival Forecasts) (pdf, 0.1 Mb) ◾The state of the western North Pacific in the first half of 2007 (pdf, 0.4 Mb) ◾PICES Calendar (pdf, 0.4 Mb) ◾The Bering Sea: Current status and recent events (pdf, 0.3 Mb) ◾PICES Interns (pdf, 0.3 Mb) ◾Recent trends in waters of the subarctic NE Pacific (pdf, 0.3 Mb) ◾Election results at PICES (pdf, 0.2 Mb) ◾A new PICES award for monitoring and data management activities (pdf, < 0.1 Mb)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.