74 resultados para Fauna do rio
Resumo:
pages 1-3
Resumo:
Executive Summary: A number of studies have shown that mobile, bottom-contact fishing gear (such as otter trawls) can alter seafloor habitats and associated biota. Considerably less is known about the recovery of these resources following such disturbances, though this information is critical for successful management. In part, this paucity of information can be attributed to the lack of access to adequate control sites – areas of the seafloor that are closed to fishing activity. Recent closures along the coast of central California provide an excellent opportunity to track the recovery of historically trawled areas and to compare recovery rates to adjacent areas that continue to be trawled. In June 2006 we initiated a multi-year study of the recovery of seafloor microhabitats and associated benthic fauna inside and outside two new Essential Fish Habitat (EFH) closures within the Cordell Bank and Gulf of the Farallones National Marine Sanctuaries. Study sites inside the EFH closure at Cordell Bank were located in historically active areas of fishing effort, which had not been trawled since 2003. Sites outside the EFH closure in the Gulf of Farallones were located in an area that continues to be actively trawled. All sites were located in unconsolidated sands at equivalent water depths. Video and still photographic data collected via a remotely operated vehicle (ROV) were used to quantify the abundance, richness, and diversity of microhabitats and epifaunal macro-invertebrates at recovering and actively trawled sites, while bottom grabs and conductivity/temperature/depth (CTD) casts were used to quantify infaunal diversity and to characterize local environmental conditions. Analysis of still photos found differences in common seafloor microhabitats between the recovering and actively trawled areas, while analysis of videographic data indicated that biogenic mound and biogenic depression microhabitats were significantly less abundant at trawled sites. Each of these features provides structure with which demersal fishes, across a wide range of size classes, have been observed to associate. Epifaunal macro-invertebrates were sparsely distributed and occurred in low numbers in both treatments. However, their total abundance was significantly different between treatments, which was attributable to lower densities at trawled sites. In addition, the dominant taxa were different between the two sites. Patchily-distributed buried brittle stars dominated the recovering site, and sea whips (Halipteris cf. willemoesi) were most numerous at the trawled site though they occurred in only five of ten transects. Numerical classification (cluster analysis) of the infaunal samples also revealed a clear difference between benthic assemblages in the recovering vs. trawled areas due to differences in the relative abundances of component species. There were no major differences in infaunal species richness, H′ diversity, or J′ evenness between recovering vs. trawled site groups. However, total infaunal abundance showed a significant difference attributable to much lower densities at trawled sites. This pattern was driven largely by the small oweniid polychaete Myriochele gracilis, which was the most abundant species in the overall study region though significantly less abundant at trawled sites. Other taxa that were significantly less abundant at trawled sites included the polychaete M. olgae and the polychaete family Terebellidae. In contrast, the thyasirid bivalve Axinopsida serricata and the polychaetes Spiophanes spp. (mostly S. duplex), Prionospio spp., and Scoloplos armiger all had significantly to near significantly higher abundances at trawled sites. As a result of such contrasting species patterns, there also was a significant difference in the overall dominance structure of infaunal assemblages between the two treatments. It is suggested that the observed biological patterns were the result of trawling impacts and varying levels of recovery due to the difference in trawling status between the two areas. The EFH closure was established in June 2006, within a month of when sampling was conducted for the present study, however, the stations within this closure area are at sites that actually have experienced little trawling since 2003, based on National Marine Fishery Service trawl records. Thus, the three-year period would be sufficient time for some post-trawling changes to have occurred. Other results from this study (e.g., similarly moderate numbers of infaunal species in both areas that are lower than values recorded elsewhere in comparable habitats along the California continental shelf) also indicate that recovery within the closure area is not yet complete. Additional sampling is needed to evaluate subsequent recovery trends and persistence of effects. Furthermore, to date, the study has been limited to unconsolidated substrates. Ultimately, the goal of this project is to characterize the recovery trajectories of a wide spectrum of seafloor habitats and communities and to link that recovery to the dynamics of exploited marine fishes. (PDF has 48 pages.)
Resumo:
This key includes 60 species of sea anemones and their relatives in the orders Actiniaria, Corallimorpharia, Ceriantharia, and Zoanthidea. Species from the intertidal zone, continental slope, and deep sea are included over a geographic range from Atlantic Canada to approximately South Carolina. In addition to the illustrated key itself, characteristics of each species are summarized in tabular form, including morphology, distribution, and types and sizes of cnidae. Ecological and taxonomic information on each species are also included in an annotated species list. (PDF file contains 76 pages.)
Resumo:
From the mid-1950's to the mid-1960's a series of quantitative surveys of the macrobenthic invertebrate fauna were conducted in the offshore New England region (Maine to Long Island, New York). The surveys were designed to 1) obtain measures of macrobenthic standing crop expressed in terms of density and biomass; 2) determine the taxonomic composition of the fauna (ca. 567 species); 3) map the general features of macrobenthic distribution; and 4) evaluate the fauna's relationships to water depth, bottom type, temperature range, and sediment organic carbon content. A total of 1,076 samples, ranging from 3 to 3,974 m in depth, were obtained and analyzed. The aggregate macrobenthic fauna consists of 44 major taxonomic groups (phyla, classes, orders). A striking fact is that only five of those groups (belonging to four phyla) account for over 80% of both total biomass and number of individuals of the macrobenthos. The five dominant groups are Bivalvia, Annelida, Amphipoda, Echninoidea, and Holothuroidea. Other salient features pertaining to the macrobenthos of the region are the following: substantial differences in quantity exist among different geographic subareas within the region, but with a general trend that both density and biomass increase from northeast to southwest; both density and biomass decrease with increasing depth; the composition of the bottom sediments significantly influences both the kind and quantity of macrobenthic invertebrates, the largest quantities of both measures of abundance occurring in the coarser grained sediments and diminishing with decreasing particle size; areas with marked seasonal changes in water temperature support an abundant and diverse fauna, whereas a uniform temperature regime is associated with a sparse, less diverse fauna; and no detectable trends are evident in the quantitative composition of the macrobenthos in relation to sediment organic carbon content. (PDF file contains 246 pages.)
Resumo:
The phylum Acanthocephala (intestinal worm parasites of vertebrates) of the Atlantic coast of the United States comprises 43 species and 20 genera belonging to three orders: Echinorhynchida, Neoechinorhynchida, and Polymorphida. Adults are exclusively intestinal parasites of vertebrates. This study includes those species found in vertebrates of marine and estuarine environments along the North American Atlantic coast between Maine and Texas. Species that can be found within that geographical range and those that typically infect freshwater fishes but that are occasionally present in marine or estuarine hosts are also included. The taxonamy, anatomy, natural history, and ecology of the phylum Acanthocephala are discussed, and an illustrated key to the genera is presented. Techniques, an annotated systematic treatment of all 43 species, and a systematic index are included. No systematic decisions will be made at this time, but areas where such decisions are pending will be indicated and discussed for future reports. (PDF file contains 32 pages.)
Resumo:
(PDF file contains 112 pages.)
Resumo:
This manual treats the six species of dicyemid mesozoans that have been reported in three species of hosts (Octopus vulgaris, O. joubini, and O. briareus) from the eastern coast of North America and the Gulf of Mexico, including the Florida Keys. All are parasites of species of Octopus and are in the genus Dicyema, family Dicyemidae. In the introduction, the life cycle, as known, and the general morphology of dicyemids are briefly described, and methods are given for collecting and preparing material for study. These are followed by a key to species and by an annotated checklist, which includes data, some hitherto unpublished, on their known prevalence in hosts from various localities including Bimini and Bermuda.(PDF file contains 20 pages.)
Resumo:
Forty-nine species of erect Bryozoa from a broad range of Cyclostome, Ctenostome, and Cheilostome families are described and illustrated, and an artificial dichotomous key is provided for their identification. In general, the marine bryozoan faunas of the northeastern coasts of the United States are poorly known; species records are sparse and voucher collections few, and it is certain that many more species occur in this region than are presently known. The species described here occur in intertidal, coastal or offshore habitats; some are well known and have been recorded on numerous previous occasions, others have been only rarely reported, while a few are known to occur commonly in the north of the region but have yet to be recorded south of Cape Cod. Some of the species described have not been recorded at all on northeastern coasts of the United States, but are widely distributed in North Atlantic continental shelf habitats and perhaps occur in similar parts of the outer shelf of this region. This fauna is thus provisional, but is intended to stimulate further work on the Bryozoa. (PDF file contains 52 pages.)
Resumo:
This manual includes an introduction to the general biology, a selected bibliography, and an illustrated key to 11 genera and 17 species of copepods of the Crustacea, Subclass Copepoda, Order Cyclopoida, Families Archinotodelphyidae, Notodelphyidae and Ascidicolidae, associated with ascidians from the Atlantic Coast of the United States. Species distributed from the Gulf of Maine to Long Island Sound are emphasized. An annotated systematic list, with statements of the world distribution and new records of association with hosts, and a systematic index are also provided. (PDF file contains 44 pages.)
Resumo:
The crinoid fauna of the continental margin (0-1500 m) of northeastern North America (Georgia to Canada) includes 14 species in 13 genera and 5 families. We introduce the external morphology and natural history of crinoids and include a glossary of terms, an illustrated key to local taxa, annotated systematic list, and an index. The fauna includes 2 species found no further south than New England and 8 that occur no further north than the Carolinas and Blake Plateau. Comactinia meridionalis (Agassiz) is the only species commonly found in shallow water «50 m). No taxa are endemic to the area. (PDF file contains 34 pages.)
Resumo:
The cephalopods found in neritic waters of the northeastern United States include myopsid and oegopsid squids, sepiolid squids, and octopods. A key with diagnostic illustrations is provided to aid in identification of the eleven species common in the neritic waters between Cape Hatteras and Nova Scotia; included also is information on two oceanic species that occur over the continental shelf in this area and that can be confused with similar-looking neritic species. Other sections comprise a glossary of taxonomic characters used for identification of these species, an annotated systematic checklist, and checklists of the 89 other oceanic species and 18 Carolinian and subtropical neritic species that might occur occasionally off the northeastern United States. (PDF file contains 30 pages.)
Resumo:
The echinoid fauna from littoral to abyssal depths off the northeastern United States (Cape Hatteras, NC, to northern Nova Scotia) comprises 31 species, in 26 genera and 19 families. An introduction to the external morphology, distribution, and natural history is given along with an illustrated key to the species, an annotated systematic list, and an index. The fauna Includes 17 species with wide-ranging distributions on continental slopes or abyssal plains. The remaining 14 species occur in shallower waters on the continental shelf or upper slope. Of these, eight are tropical in distribution with their northern range extending to the northeastern United States and three are mainly boreal with the northeastern United States at the southern limit of their range. Two species occur only off the eastern United States and one species is cosmopolitan. (PDF file contains 33 pages.)
Resumo:
The aim of this paper is to summarize the present legislation aimed at protecting freshwater species in Britain, and briefly to review its effectiveness. Some areas have been deliberately omitted, such as fisheries legislation designed to conserve stocks, and the statutory protection of birds associated with fresh waters which forms a large subject area in its own right.
Resumo:
The Anambra River is the largest tributary of the lower Niger River below Lukoja. Between the months of May and November the river is subject to seasonal flooding from heavy precipitation and land runoff into the drainage system. During the flood phase, pools form on the floodplains (known as the fadama) and these pools receive materials and biota from the main river channel. The biota often includes representatives of freshwater vertebrates (including fishes) and invertebrates. On this brief note, the authors report on the macroinvertebrates found during preliminary studies on four fadama pools during the non-flood season between December 1994 and April 1995. 523 specimens were collected, of which 86% were arthropods, 9% were annelids (mostly Tubifex and Nais) and a few leeches (Hirudo), and 5% were gastropod molluscs of the arthropods, 75% were insects particularly Hemiptera and Diptera.
Resumo:
During July and August 1988, 21 ponds and 33 ditch sites were sampled at Swavesey fens in East Anglia. Water from each site was collected and analysed at monthly intervals in the year preceding faunal sampling. Temperature and oxygen were measured on site. The "quality" of the faunal community was assessed by three approaches: a modification of the BMWP scoring system (Biological Monitoring Working Party); faunal richness was calculated as the number of faunal "groups" at each site; and by using Simpson's index of diversity. Statistical analysis was carried out to explore the relationships between sites, environmental variables and faunal diversity. The survey clearly showed the detrimental effects of elevated nitrate and phosphate from agricultural sources and the localised impacts of treated sewage effluent on invertebrates in ditches.