141 resultados para Estuaries -- Kuwait
Resumo:
In the following an attempt is made to outline the specific problems of modelling of estuaries as characterized by the discharge of fresh water into a partially enclosed sea water body. The hydrodynamical regime and exchange mechanisms encountered in estuaries lead to specific chemical, biological and geological processes requiring specially adapted models.
Resumo:
Toxic chemicals can enter the marine environment through numerous routes: stormwater runoff, industrial point source discharges, municipal wastewater discharges, atmospheric deposition, accidental spills, illegal dumping, pesticide applications and agricultural practices. Once they enter a receiving system, toxicants often become bound to suspended particles and increase in density sufficiently to sink to the bottom. Sediments are one of the major repositories of contaminants in aquatic envronments. Furthermore, if they become sufficiently contaminated sediments can act as sources of toxicants to important biota. Sediment quality data are direct indicators of the health of coastal aquatic habitats. Sediment quality investigations conducted by the National Oceanic and Atmospheric Administration (NOAA) and others have indicated that toxic chemicals are found in the sediments and biota of some estuaries in South Carolina and Georgia (NOAA, 1992). This report documents the toxicity of sediments collected within five selected estuaries: Savannah River, Winyah Bay, Charleston Harbor, St. Simons Sound, and Leadenwah Creek (Figure 1). (PDF contains 292 pages)
Resumo:
Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)
Resumo:
This brief paper gives some notes on the geographical distribution and salinity tolerances of some Mugil species occurring in the Black-Johnson estuary, Sierra Leone
Resumo:
For most migratory fish, little is known about the location and size of foraging areas or how long individuals remain in foraging areas, even though these attributes may affect their growth, survival, and impact on local prey. We tested whether striped bass (Morone saxatilis Walbaum), found in Massachusetts in summer, were migratory, how long they stayed in non-natal estuaries, whether observed spatial patterns differed from random model predictions, whether fish returned to the same area across multiple years, and whether fishing effort could explain recapture patterns. Anchor tags were attached to striped bass that were caught and released in Massachusetts in 1999 and 2000, and recaptured between 1999 and 2007. In fall, tagged striped bass were caught south of where they were released in summer, confirming that fish were coastal migrants. In the first summer, 77% and 100% of the recaptured fish in the Great Marsh and along the Massachusetts coast, respectively, were caught in the same place where they were released. About two thirds of all fish recaptured near where they were released were caught 2–7 years after tagging. Our study shows that smaller (400–500 mm total length) striped bass migrate hundreds of kilometers along the Atlantic Ocean coast, cease their mobile lifestyle in summer when they use a relatively localized area for foraging (<20 km2), and return to these same foraging areas in subsequent ye
Resumo:
The increase in the abundance of gray snapper (Lutjanus griseus) in Texas bays and estuaries over the past 30 years is correlated to increased wintertime surface water temperatures. Trends in the relative abundance of gray snapper are evaluated by using monthly fishery-independent monitoring data from each of the seven major estuaries along the Texas coast from 1978 through 2006. Environmental conditions during this period demonstrated increasing annual sea surface temperatures, although this increase was not seasonally uniform. The largest proportion of temperature increases was attributed to higher winter temperature minimums since 1993. Positive phases of the North Atlantic Oscillation, resulting in wetter, warmer winters in the eastern United States have occurred nearly uninterrupted since the late 1970s, and unprecedented positive index values occurred between 1989 and 1995. Increases in water temperature in Texas estuaries, beginning in the early 1990s, are postulated to provide both favorable over-wintering conditions for the newly settled juveniles and increased recruitment success. In the absence of cold winters, this species has established semipermanent estuarine populations across the entire Texas coast. A shift to negative phases of the North Atlantic Oscillation will likely result in returns to colder winter temperature minimums that could reverse any recent population gains.
Resumo:
This study examined the sexual differentiation and reproductive dynamics of striped mullet (Mugil cephalus L.) in the estuaries of South Carolina. A total of 16,464 specimens were captured during the study and histological examination of sex and maturity was performed on a subsample of 3670 fish. Striped mullet were sexually undifferentiated for the first 12 months, began differentiation at 13 months, and were 90% fully differentiated by 15 to 19 months of age and 225 mm total length (TL). The defining morphological characteristics for differentiating males was the elongation of the protogonial germ tissue in a corradiating pattern towards the center of the lobe, the development of primary and secondary ducts, and the lack of any recognizable ovarian wall structure. The defining female characteristics were the formation of protogonial germ tissue into spherical germ cell nests, separation of a tissue layer from the outer epithelial layer of the lobe-forming ovarian walls, a tissue bud growing from the suspensory tissue that helped form the ovary wall, and the proliferation of oogonia and oocytes. Sexual maturation in male striped mullet first occurred at 1 year and 248 mm TL and 100% maturity occurred at age 2 and 300 mm TL. Female striped mullet first matured at 2 years and 291 mm total length and 100% maturity occurred at 400 mm TL and age 4. Because of the open ocean spawning behavior of striped mullet, all stages of maturity were observed in males and females except for functionally mature females with hydrated oocytes. The spawning season for striped mullet recruiting to South Carolina estuaries lasts from October to April; the majority of spawning activity, however, occurs from November to January. Ovarian atresia was observed to have four distinct phases. This study presents morpholog ical analysis of reproductive ontogeny in relation to size and age in South Carolina striped mullet. Because of the length of the undifferentiated gonad stage in juvenile striped mullet, previous studies have proposed the possibility of protandric hermaphrodism in this species. The results of our study indicate that striped mullet are gonochoristic but capable of exhibiting nonfunctional hermaphroditic characteristics in differentiated mature gonads.
Resumo:
The growth parameters of Otolithes ruber (Sciaenidae) were determined from both length-frequency and length-at-age data collected from Kuwait waters from 1984 to 1986. The similarity of the growth parameters is reflected in the small range of the parameters o' (=log sub(10)K+2logL) which indicates the compatibility of the two methods for this relatively short-lived species.
Resumo:
Tilapia farming in Kuwait is in its early stages. Slow growth, high production cost and poor demand are the major constraints to the expansion of tilapia culture in Kuwait. This article presents some suggestions for overcoming these problems to improve the economic feasibility of tilapia culture in Kuwait.
Resumo:
The coastal geomorphological processes of alongshore transport and tidal currents are interacting with the attendant influences of sea-level rise and sediment supply to generate morphosedimentary units in selected estuarine systems. Constrained by the conditions promoted by microtidal situations in barrier island settings, vectors of sediment transport have established spatial sequences of morphologies and sediment types that are components of shellfish habitats. Greater depth and decreasing grain-size toward the mainland are common characteristics in five northeastern U.S. estuarine systems. The patterns are repeated at various scales among the lagoon-type estuaries as well as within the estuarine settings to establish geospatial associations of geomorphology and habitat.
Resumo:
Mats (biomasses) of macroalgae, i.e. Ulva spp., Enteromorpha spp., Graciolaria spp., and Cladophora spp., have increased markedly over the past 50 years, and they cover much larger areas than they once did in many estuaries of the world. The increases are due to large inputs of pollutants, mainly nitrates. During the warm months, the mats lie loosely on shallow sand and mud flats mostly along shorelines. Ulva lactuca overwinters as buds attached to shells and stones, and in the spring it grows as thalli (leaf fronds). Mats eventually form that are several thalli thick. Few macroinvertebrates grow on the upper surfaces of their thalli due to toxins they produce, and few can survive beneath them. The fish, crabs, and wading birds that once used the flats to feed on the macroinvertebrates are denied these feeding grounds. The mats also grow over and kill mollusks and eelgrass, Zostera marina. An experiment was undertaken which showed that two removals of U. lactuca in a summer from a shallow flat in an estuarine cove maintained the bottom almost free of it.
Resumo:
Oyster landings in the United States and Canada have been based mainly on three species, the native eastern oyster, Crassostrea virginica, native Olympia oyster, Ostreola conchaphila, and introduced Pacific oyster, C. gigas. Landings reached their peak of around 27 million bushels/year in the late 1800's and early 1900's when eastern oysters were a common food throughout the east coast and Midwest. Thousands of people were involved in harvesting them with tongs and dredges and in shucking, canning, packing, and transporting them. Since about 1906, when the United States passed some pure food laws, production has declined. The causes have been lack of demand, siltation of beds, removal of cultch for oyster larvae while harvesting oysters, pollution of market beds, and oyster diseases. Production currently is about 5.6 million bushels/year.
Resumo:
This is the Wetland resource evaluation and the NRA's role in its conservation: Resource assessment report produced by North West Water in 1982. In this report data from a variety of sources in river Leven and Leven estuary have been examined to determine if there was any objective foundation for the allegations and for the assertion that poor fish catches were related to discharges of industrial effluent to the estuary. Catches of salmon and sea trout from the Leven did not appear to have suffered any long term declines and year to year fluctuations did not appear to be any more extreme than in other North West rivers. Fish surveys did not show any marked differences in the diversity or distribution of fish between the Kent and Leven estuaries but catches of flounders were consistently lower from the Leven estuary. Analysis of fisheries statistics of landings of fish and shellfish from Morecambe Bay did not show any evidence of localised declines in catches from the Leven estuary. Results of laboratory experiments suggested that populations of bivalve molluscs might be more at risk from the effects of discharges to the Leven estuary than resident or migratory fish.
Distribution of fishery resources in relation to hydrographic conditions in North Carolina estuaries