27 resultados para Disruptive technologies
Resumo:
This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River.
Resumo:
This Technical memorandum fulfills Task 2 for Agreement 03-495 between El Dorado County and the Office of Water Programs at California State University Sacramento and their co-authors, Bachand & Associates and the University of California Tahoe Research Group: 1) a review of current stormwater treatment Best Management Practices (BMP) in the Tahoe Basin and their potential effectiveness in removing fine particles and reducing nutrient concentrations; 2) an assessment of the potential for improving the performance of different types of existing BMPs through retrofitting or better maintenance practices; 3) a review of additional promising treatment technologies not currently in use in the Tahoe Basin; and 4) a list of recommendations to help address the knowledge gaps in BMP design and performance. ... (PDF contains 67 pages)
Resumo:
This publication of the NOAA Professional Paper NMFS Series is the product of a special symposium on “Emerging Technologies for Reef Fisheries Research and Management” held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003. The purpose of this collection is to highlight the diversity of questions and issues in reef fisheries management that are benefiting from applications of technology. Topics cover a wide variety of questions and issues from the study of individual behavior, distribution and abundance of groups and populations, and associations between habitats and fish and shellfish species.(PDF files contains 124 pages.)
Resumo:
This publication of the NOAA Professional Paper NMFS Series is the product of a special symposium on “Emerging Technologies for Reef Fisheries Research and Management” held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003. The purpose of this collection is to highlight the diversity of questions and issues in reef fisheries management that are benefiting from applications of technology. Topics cover a wide variety of questions and issues from the study of individual behavior, distribution and abundance of groups and populations, and associations between habitats and fish and shellfish species.
Resumo:
Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.
Resumo:
The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on "Wave Sensor Technologies" in St. Petersburg, Florida on March 7-9, 2007, hosted by the University of South Florida (USF) College of Marine Science, an ACT partner institution. The primary objectives of this workshop were to: 1) define the present state of wave measurement technologies, 2) identify the major impediments to their advancement, and 3) make strategic recommendations for future development and on the necessary steps to integrate wave measurement sensors into operational coastal ocean observing systems. The participants were from various sectors, including research scientists, technology developers and industry providers, and technology users, such as operational coastal managers and coastal decision makers. Waves consistently are ranked as a critical variable for numerous coastal issues, from maritime transportation to beach erosion to habitat restoration. For the purposes of this workshop, the participants focused on measuring "wind waves" (i.e., waves on the water surface, generated by the wind, restored by gravity and existing between approximately 3 and 30-second periods), although it was recognized that a wide range of both forced and free waves exist on and in the oceans. Also, whereas the workshop put emphasis on the nearshore coastal component of wave measurements, the participants also stressed the importance of open ocean surface waves measurement. Wave sensor technologies that are presently available for both environments include bottom-mounted pressure gauges, surface following buoys, wave staffs, acoustic Doppler current profilers, and shore-based remote sensing radar instruments. One of the recurring themes of workshop discussions was the dichotomous nature of wave data users. The two separate groups, open ocean wave data users and the nearshore/coastal wave data users, have different requirements. Generally, the user requirements increase both in spatial/temporal resolution and precision as one moves closer to shore. Most ocean going mariners are adequately satisfied with measurements of wave period and height and a wave general direction. However, most coastal and nearshore users require at least the first five Fourier parameters ("First 5"): wave energy and the first four directional Fourier coefficients. Furthermore, wave research scientists would like sensors capable of providing measurements beyond the first four Fourier coefficients. It was debated whether or not high precision wave observations in one location can take the place of a less precise measurement at a different location. This could be accomplished by advancing wave models and using wave models to extend data to nearby areas. However, the consensus was that models are no substitution for in situ wave data.[PDF contains 26 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport. Eight recommendations were made by participants at the conclusion of the workshop and are presented here without prioritization: 1. Encourage research toward development of energy scavenging devices of suitable sizes for use in remote sensing packages attached to marine animals. 2. Encourage funding sources for development of new sensor technologies and animal-borne tags. 3. Develop animal-borne environmental sensor platforms that offer more combined systems and improved data recovery methodologies, and expand the geographic scope of complementary fixed sensor arrays. 4. Engage the oceanographic community by: a. Offering a mini workshop at an AGU ocean sciences conference for people interested in developing an ocean carbon program that utilizes animal-borne sensor technology. b. Outreach to chemical oceanographers. 5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be applied to marine sensors (e.g. biomedical field). 6. Encourage the NOAA Permitting Office to: a. Make a more predictable, reliable, and consistent permitting system for using animal platforms. b. Establish an evaluation process. c. Adhere to established standards. 7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms. 8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking as effective samplers of the marine environment, and use of animals as ocean sensor technology platforms. [PDF contains 20 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop entitled "Technologies for Measuring Currents in Coastal Environments" was held in Portland, Maine, October 26-28, 2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), an ACT partner organization. The primary goals of the event were to summarize recent trends in nearshore research and management applications for current meter technologies, identify how current meters can assist coastal managers to fulfill their regulatory and management objectives, and to recommend actions to overcome barriers to use of the technologies. The workshop was attended by 25 participants representing state and federal environmental management agencies, manufacturers of current meter technologies, and researchers from academic institutions and private industry. Common themes that were discussed during the workshop included 1) advantages and limitations of existing current measuring equipment, 2) reliability and ease of use with each instrument type, 3) data decoding and interpretation procedures, and 4) mechanisms to facilitate better training and guidance to a broad user group. Seven key recommendations, which were ranked in order of importance during the last day of the workshop are listed below. 1. Forums should be developed to facilitate the exchange of information among users and industry: a) On-line forums that not only provide information on specific instruments and technologies, but also provide an avenue for the exchange of user experiences with various instruments (i.e. problems encountered, cautions, tips, advantages, etc). (see References for manufacturer websites with links to application and technical forums at end of report) b) Regional training/meetings for operational managers to exchange ideas on methods for measuring currents and evaluating data. c) Organize mini-meetings or tutorial sessions within larger conference venues. 2. A committee of major stakeholders should be convened to develop common standards (similar to the Institute of Electrical and Electronics Engineers (IEEE) committee) that enable users to switch sensors without losing software or display capabilities. (pdf contains 28 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened a workshop on the Applications of Drifting Buoy Technologies for Coastal Watershed and Ecosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005. The objectives of the workshop were to: (1) educate potential users (managers and scientists) about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunity for users (managers and scientists) to experience first hand the deployment and retrieval of various drifting buoys, as well as experience the capabilities of the buoys' technologies; (3) engage manufacturers with scientists and managers in discussions on drifting buoys' capabilities and their requirements to promote further applications of these systems; (4) promote a dialogue about realistic advantages and limitations of current drifting buoy technologies; and (5) develop a set of key recommendations for advancing both the capabilities and uses of drifting buoy technologies for coastal watershed and ecosystem modeling. To achieve these goals, representatives from research, academia, industry, and resource management were invited to participate in this workshop. Attendees obtained "hands on" experience as they participated in the deployment and retrieval of various drifting buoy systems on Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened for discussions on current commercial usages and environmental monitoring approaches including; user requirements for drifting buoys, current status of drifting buoy systems and enabling technologies, and the challenges and strategies for bringing new drifting buoys "on-line". The following general recommendations were made to: 1). organize a testing program of drifting buoys for marketing their capabilities to resource managers and users. 2). develop a fact sheet to highlight the utility of drifting buoys. 3). facilitate technology transfer for advancements in drifter buoys that may be occurring through military funding and development in order to enhance their technical capability for environmental applications. (pdf contains 18 pages)
Resumo:
(pdf contains 23 pages)
Resumo:
Technology generation and dissemination are important components of rural transformation programmes. Nigerian fisheries sub-sector is still hampered by low productivity (especially in aquaculture) and low output (capture fisheries and post-harvest technologies). Research institutions and the Universities have made efforts in developing improved technologies to find solution to these problems, yet the level of adoption of the technologies remain low. This is due to a combination of various factors among which are faulty agricultural policies; institutional framework and unfavourable socio-economic environment. Niger State plays an important role in production in Nigeria and host the only research institute with the mandate in inland fisheries. It is important therefore to know the effectiveness of various extension approaches used in disseminating the technologies developed and their impact on adopters. Forty fishers were randomly selected in Shiroro L.G.A. of the Niger State and interviewed. The study probed into their socio-economic characteristics, traditional practices, extent of awareness and adoption for fisheries technologies and the effectiveness and impact of various approaches used by the extension organizations to disseminate the technologies. The results show that the economically active age group of the fishers was in the range of 20-50 years (87.5%). Males (95%) dominate the fisher population. 47.5% of the respondents have average household size of 6-10 and 57.5% were below primary school in educational attainment. Only 57.5% belonged to cooperative societies, while 90.0% of the fishers have no access to credit other than personal finance. Majority of fish-farmers (60%) operate at homestead level with pond size less than 50 square meter, stock under polyculture fishing methods are at subsistence level, while 67.5% of processors use mud-oven to cure, by smoking, freshly caught fish. Disseminated aquaculture technologies have low level of awareness (5-20%) and adoption (2.5-22.5%). For capture fisheries and post-harvest technologies awareness levels of 47.5-72.5% and adoption levels of 27.5-50.0% were recorded. Method demonstration (87.5%), result demonstration (75.0%) and field days (47.5%) are the major approaches used by the ADP. Respondents were of the opinion that method demonstration (65%), result demonstration (57.5%) and field day (30.0%) are effective. 62.5% of respondents had enhanced income due impact of extension activities