18 resultados para De-colonization
Resumo:
C. pseudogracilis , was first seen in the South Basin of Windermere in 1960. The colonization of the lake from South to North is described (1961 to 1964). The relationship with Asellus and Gammarus is mentioned. Possible reasons for its successful colonization are discused as are the methods by which it may have been transported to the lake.
Resumo:
Predicting and averting the spread of invasive species is a core focus of resource managers in all ecosystems. Patterns of invasion are difficult to forecast, compounded by a lack of user-friendly species distribution model (SDM) tools to help managers focus control efforts. This paper presents a web-based cellular automata hybrid modeling tool developed to study the invasion pattern of lionfish (Pterois volitans/miles) in the western Atlantic and is a natural extension our previous lionfish study. Our goal is to make publically available this hybrid SDM tool and demonstrate both a test case (P. volitans/miles) and a use case (Caulerpa taxifolia). The software derived from the model, titled Invasionsoft, is unique in its ability to examine multiple default or user-defined parameters, their relation to invasion patterns, and is presented in a rich web browser-based GUI with integrated results viewer. The beta version is not species-specific and includes a default parameter set that is tailored to the marine habitat. Invasionsoft is provided as copyright protected freeware at http://www.invasionsoft.com.
Resumo:
Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)
Resumo:
Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts.
Resumo:
Whereas some species may rely on periodic drought conditions for part of their life histories, or have life strategies suited to exploiting the habitat or changed environmental conditions that are created by drought, for other organisms it is a time of stress. Periodic drought conditions therefore generate a series of waves of colonization and extinctions. Studies on lowland wet grassland, in winterbournes and in the toiche zone of both ponds and rivers, also demonstrate that different organisms are competitively favoured with changing hydrological conditions, and that this process prevents any one species from overwhelming its competitors. Competitive impacts may be inter- and intraspecific. It is therefore apparent that the death of organisms such as adult fish during severe drought conditions, though traumatic for human onlookers and commercial interests, may be merely a regular occurrence to which the ecosystem is adapted. The variability of climatic conditions thereby provides a direct influence on the maintenance of biological diversity, and it is this very biodiversity that provides the ecosystem with the resilience to respond to environmental changes in both the short and the longer term.
Resumo:
To study and qualify the factors influencing interactions between various trophic levels in natural hard-water streams, a recirculating artificial stream channel was constructed. This structure has enabled patterns of population change of stream fauna to be observed under partially controlled physical and chemical conditions. Initial colonization of the substratum by invertebrates and subsequent succession was studied along with depth distribution and growth and production studies of invertebrates.
Resumo:
This monograph on the ecology of Atlantic white cedar wetlands is one of a series of U.S. Fish and Wildlife Service profiles of important freshwater wetland ecosystems of the United States. The purpose of the profile is to describe the extent, components, functioning, history, and treatment of these wetlands. It is intended to provide a useful reference to relevant scientific information and a synthesis of the available literature. The world range of Atlantic white cedar (Chamaecyparis thyoides) is limited to a ribbon of freshwater wetlands within 200 km of the Atlantic and Gulf coasts of the United States, extending from mid-Maine to mid-Florida and Mississippi. Often in inaccessible sites and difficult to traverse, cedar wetlands contain distinctive suites of plant species. Highly valued as commercial timber since the early days of European colonization of the continent, the cedar and its habitat are rapidly disappearing. This profile describes the Atlantic white cedar and the bogs and swamps it dominates or codominates throughout its range, discussing interrelationships with other habitats, putative origins and migration patterns, substrate biogeochemistry, associated plant and animal species (with attention to those that are rare, endangered, or threatened regionally or nationally), and impacts of both natural and anthropogenic disturbance. Research needs for each area are outlined. Chapters are devoted to the practices and problems of harvest and management, and to an examination of a large preserve recently acquired by the USFWS, the Alligator River National Wildlife Refuge in North Carolina.
Resumo:
The invasive colonial tunicate Didemnum vexillum has become widespread in New England waters, colonizing large areas of shell-gravel bottom on Georges Bank including commercial sea scallop (Placopecten magellanicus) grounds. Didemnum vexillum colonies are also fouling coastal shellfish aquaculture gear which increases maintenance costs and may affect shellfish growth rates. We hypothesized that D. vexillum will continue to spread and may affect shellfish larval settlement and survival. We conducted a laboratory experiment to assess interactions between larval bay scallops (Argopectin irradians irradians) and D. vexillum. We found that larval bay scallops avoid settling on D. vexillum colonies, possibly deterred by the low pH of the tunicate’s surface tissue. The results of this study suggest that widespread colonization of substrata by D. vexillum could affect scallop recruitment by reducing the area of quality habitats available for settlement. We propose that the bay scallop can serve as a surrogate for the sea scallop in estimating the negative impact D. vexillum could have on the recruitment of sea scallops on Georges Bank.
Resumo:
We surveyed variation at 13 microsatellite loci in approximately 7400 chinook salmon sampled from 52 spawning sites in the Fraser River drainage during 1988–98 to examine the spatial and temporal basis of population structure in the watershed. Genetically discrete chinook salmon populations were associated with almost all spawning sites, although gene flow within some tributaries prevented or limited differentiation among spawning groups. The mean FST value over 52 samples and 13 loci surveyed was 0.039. Geographic structuring of populations was apparent: distinct groups were identified in the upper, middle, and lower Fraser River regions, and the north, south, and lower Thompson River regions. The geographically and temporally isolated Birkenhead River population of the lower Fraser region was sufficiently genetically distinctive to be treated as a separate region in a hierarchial analysis of gene diversity. Approximately 95% of genetic variation was contained within populations, and the remainder was accounted for by differentiation among regions (3.1%), among populations within regions (1.3%), and among years within populations (0.5%).Analysis of allelic diversity and private alleles did not support the suggestion that genetically distinctive populations of chinook salmon in the south Thompson were the result of postglacial hybridization of ocean-type and stream-type chinook in the Fraser River drainage. However, the relatively small amount of differentiation among Fraser River chinook salmon populations supports the suggestion that gene flow among genetically distinct groups of postglacial colonizing groups of chinook salmon has occurred, possibly prior to colonization of the Fraser River drainage.