16 resultados para Christine Whittington
Resumo:
A study on the reproductive biology of Amblema neislerii, Elliptoideus sloatianus, Lampsilis subangulata, Medionidus penicillatus, and Pleurobema pyriforme was conducted from May 1995 to May 1997. The objectives of this study were as follows: 1) determine period of gravidity for each of the five mussel species, 2) determine host fish via laboratory experiments, 3) test whether unionid glochidia will transform on a nonidingenous fish, and 4) describe the glochidial morphology for each of the five mussel species using a scanning electron microscope. Amblema neislerii are tachytictic breeders and were found with mature glochidia in May. Elliptoideus sloatianus are tachytictic breeders and were found with mature glochidia from late February to early April. Lampsilis subangulata are bradytictic breeders and were found with mature glochidia from December to August. Superconglutinates were released by L. subangulata from late May to early July. Medionidus penicillatus are bradytictic breeders and were found with mature glochidia in November and February to April. Pleurobema pyriforme are tachytictic breeders and were found with mature glochidia from March to July. The following fish species served as hosts for A. neislerii: Notropis texanus, Lepomis macrochirus, L. microlophus, Micropterus salmoides, and Percina nigrofasciata. The following fish species served as hosts for E. sloatianus: Gambusia holbrooki, Poecilia reticulata, and P. nigrofasciata. The following fish species served as hosts for L. subangulata: G. holbrooki, P. reticulata, L. macrochirus, Micropterus punctulatus, and M. salmoides. The following fish species served as hosts for M. penicillatus: G. holbrooki, P. reticulata, Etheostoma edwini, and P. nigrofasciata. The following fish species served as hosts for P. pyriforme: Pteronotropis hypselopterus, G. holbrooki, and P. reticulata. Poecilia reticulata, a nonindigenous fish, served as a host for E. sloatianus, L. subangulata, M. penicillatus, and P. pyriforme. (76 page document)
Resumo:
I REPORT OF THE PICES WORKSHOP ON THE OKHOTSK SEA AND ADJACENT AREAS (pdf, 0.1 Mb) 1. Outline of the workshop 2. Summary reports from sessions 3. Recommendations of the workshop 4. Acknowledgments II SCIENTIFIC PAPERS SUBMITTED FROM SESSIONS 1. Physical Oceanography Sessions (pdf, 4 Mb) A. Circulation and water mass structure of the Okhotsk Sea and Northwestern Pacific Valentina D. Budaeva & Vyacheslav G. Makarov Seasonal variability of the pycnocline in La Perouse Strait and Aniva Gulf Valentina D. Budaeva & Vyacheslav G. Makarov Modeling of the typical water circulations in the La Perouse Strait and Aniva Gulf region Nina A. Dashko, Sergey M. Varlamov, Young-Ho Han & Young-Seup Kim Anticyclogenesis over the Okhotsk Sea and its influence on weather Boris S. Dyakov, Alexander A. Nikitin & Vadim P. Pavlychev Research of water structure and dynamics in the Okhotsk Sea and adjacent Pacific Howard J. Freeland, Alexander S. Bychkov, C.S. Wong, Frank A. Whitney & Gennady I. Yurasov The Ohkotsk Sea component of Pacific Intermediate Water Emil E. Herbeck, Anatoly I. Alexanin, Igor A. Gontcharenko, Igor I. Gorin, Yury V. Naumkin & Yury G. Proshjants Some experience of the satellite environmental support of marine expeditions at the Far East Seas Alexander A. Karnaukhov The tidal influence on the Sakhalin shelf hydrology Yasuhiro Kawasaki On the formation process of the subsurface mixed water around the Central Kuril Islands Lloyd D. Keigwin Northwest Pacific paleohydrography Talgat R. Kilmatov Physical mechanisms for the North Pacific Intermediate Water formation Vladimir A. Luchin Water masses in the Okhotsk Sea Andrey V. Martynov, Elena N. Golubeva & Victor I. Kuzin Numerical experiments with finite element model of the Okhotsk Sea circulation Nikolay A. Maximenko, Anatoly I. Kharlamov & Raissa I. Gouskina Structure of Intermediate Water layer in the Northwest Pacific Nikolay A. Maximenko & Andrey Yu. Shcherbina Fine-structure of the North Pacific Intermediate Water layer Renat D. Medjitov & Boris I. Reznikov An experimental study of water transport through the Straits of Okhotsk Sea by electromagnetic method Valentina V. Moroz Oceanological zoning of the Kuril Islands area in the spring-summer period Yutaka Nagata Note on the salinity balance in the Okhotsk Sea Alexander D. Nelezin Variability of the Kuroshio Front in 1965-1991 Vladimir I. Ponomarev, Evgeny P. Varlaty & Mikhail Yu. Cheranyev An experimental study of currents in the near-Kuril region of the Pacific Ocean and in the Okhotsk Sea Stephen C. Riser, Gennady I. Yurasov & Mark J. Warner Hydrographic and tracer measurements of the water mass structure and transport in the Okhotsk Sea in early spring Konstantin A. Rogachev & Andrey V. Verkhunov Circulation and water mass structure in the southern Okhotsk Sea, as observed in summer, 1994 Lynne D. Talley North Pacific Intermediate Water formation and the role of the Okhotsk Sea Anatoly S. Vasiliev & Fedor F. Khrapchenkov Seasonal variability of integral water circulation in the Okhotsk Sea B. Sea ice and its relation to circulation and climate V.P. Gavrilo, G.A. Lebedev & A.P. Polyakov Acoustic methods in sea ice dynamics studies Nina M. Pestereva & Larisa A. Starodubtseva The role of the Far-East atmospheric circulation in the formation of the ice cover in the Okhotsk Sea Yoshihiko Sekine Anomalous Oyashio intrusion and its teleconnection with Subarctic North Pacific circulation, sea ice of the Okhotsk Sea and air temperature of the northern Asian continent C. Waves and tides Vladimir A. Luchin Characteristics of the tidal motions in the Kuril Straits George V. Shevtchenko On seasonal variability of tidal constants in the northwestern part of the Okhotsk Sea D. Physical oceanography of the Japan Sea/East Sea Mikhail A. Danchenkov, Kuh Kim, Igor A. Goncharenko & Young-Gyu Kim A “chimney” of cold salt waters near Vladivostok Christopher N.K. Mooers & Hee Sook Kang Preliminary results from a numerical circulation model of the Japan Sea Lev P. Yakunin Influence of ice production on the deep water formation in the Japan Sea 2. Fisheries and Biology Sessions (pdf, 2.8 Mb) A. Communities of the Okhotsk Sea and adjacent waters: composition, structure and dynamics Lubov A. Balkonskaya Exogenous succession of the southwestern Sakhalin algal communities Tatyana A. Belan, Yelena V. Oleynik, Alexander V. Tkalin & Tat’yana S. Lishavskaya Characteristics of pelagic and benthic communities on the North Sakhalin Island shelf Lev N. Bocharov & Vladimir K. Ozyorin Fishery and oceanographic database of Okhotsk Sea Victor V. Lapko Interannual dynamics of the epipelagic ichthyocen structure in the Okhotsk Sea Valentina I. Lapshina Quantitative seasonal and year-to-year changes of phytoplankton in the Okhotsk Sea and off Kuril area of the Pacific Lyudmila N. Luchsheva Biological productivity in anomalous mercury conditions (northern part of Okhotsk Sea) Inna A. Nemirovskaya Origin of hydrocarbons in the ecosystems of coastal region of the Okhotsk Sea Tatyana A. Shatilina Elements of the Pacific South Kuril area ecosystem Vyacheslav P. Shuntov & Yelena P. Dulepova Biota of the Okhotsk Sea: Structure of communities, the interannual dynamics and current status B. Abundance, distribution, dynamics of the common fishes of the Okhotsk Sea Yuri P. Diakov Influence of some abiotic factors on spatial population dynamics of the West Kamchatka flounders (Pleuronectidae) Gordon A. McFarlane, Richard J. Beamish & Larisa M. Zverkova An examination of age estimates of walleye pollock (Theragra chalcogramma) from the Sea of Okhotsk using the burnt otolith method and implications for stock assessment and management Larisa P. Nikolenko Migration of Greenland turbot (Reinhardtius hippoglossoides) in the Okhotsk Sea Galina M. Pushnikova Fisheries impact on the Sakhalin-Hokkaido herring population Vidar G. Wespestad Is pollock overfished? C. Salmon of the Okhotsk Sea: biology, abundance and stock identification Vladimir A. Belyaev, Alexander Yu. Zhigalin Epipelagic Far Eastern sardine of the Okhotsk Sea Yuri E. Bregman, Victor V. Pushnikov, Lyudmila G. Sedova & Vladimir Ph. Ivanov A preliminary report on stock status and productive capacity of horsehair crab Erimacrus isenbeckii (Brandt) in the South Kuril Strait Natalia T. Dolganova Mezoplankton distribution in the West Japan Sea Vladimir V. Efremov, Richard L. Wilmot, Christine M. Kondzela, Natalia V. Varnavskaya, Sharon L. Hawkins & Maria E. Malinina Application of pink and chum salmon genetic baseline to fishery management Vyacheslav N. Ivankov & Valentina V. Andreyeva Strategy for culture, breeding and numerous dynamics of Sakhalin salmon populations Alla M. Kovalevskaya, Natalia I. Savelyeva & Dmitry M. Polyakov Primary production in Sakhalin shelf waters Tatyana N. Krupnova Some reasons for resource reduction of Laminaria japonica (Primorye region) Lyudmila N. Luchsheva & Anatoliy I. Botsul Mercury in bottom sediments of the northeastern Okhotsk Sea Pavel A. Luk’yanov, Natalia I. Belogortseva, Alexander A. Bulgakov, Alexander A. Kurika & Olga D. Novikova Lectins and glycosidases from marine macro and micro-organisms of Japan and Okhotsk Seas Boris A. Malyarchuk, Olga A. Radchenko, Miroslava V. Derenko, Andrey G. Lapinski & Leonid L. Solovenchuk PCR-fingerprinting of mitochondrial genome of chum salmon, Oncorhynchus keta Alexander A. Mikheev Chaos and relaxation in dynamics of the pink salmon (Oncorhynchus gorbuscha) returns for two regions Yuri A. Mitrofanov & Larisa N. Lesnikova Fish-culture of Pacific Salmons increases the number of heredity defects Larisa P. Nikolenko Abundance of young halibut along the West Kamchatka shelf in 1982-1992 Sergey A. Nizyaev Living conditions of golden king crab Lithodes aequispina in the Okhotsk Sea and near the Kuril Islands Ludmila A. Pozdnyakova & Alla V. Silina Settlements of Japanese scallop in Reid Pallada Bay (Sea of Japan) Galina M. Pushnikova Features of the Southwest Okhotsk Sea herring Vladimir I. Radchenko & Igor I. Glebov Present state of the Okhotsk herring stock and fisheries outlook Alla V. Silina & Ida I. Ovsyannikova Distribution of the barnacle Balanus rostratus eurostratus near the coasts of Primorye (Sea of Japan) Galina I. Victorovskaya Dependence of urchin Strongylocentrotus intermedius reproduction on water temperature Anatoly F. Volkov, Alexander Y. Efimkin & Valery I. Chuchukalo Feeding habits of Pacific salmon in the Sea of Okhotsk and in the Pacific waters of Kuril Islands in summer 1993 Larisa M. Zverkova & Georgy A. Oktyabrsky Okhotsk Sea walleye pollock stock status Tatyana N. Zvyagintseva, Elena V. Sundukova, Natalia M. Shevchenko & Ludmila A. Elyakova Water soluble polysaccharides of some Far-Eastern seaweeds 3. Biodiversity Program (pdf, 0.2 Mb) A. Biodiversity of island ecosystems and seasides of the North Pacific Larissa A. Gayko Productivity of Japanese scallop Patinopecten yessoensis (IAY) culture in Posieta Bay (Sea of Japan) III APPENDICES 1. List of acronyms 2. List of participants (Document pdf contains 431 pages)
Resumo:
CONTENTS: Livelihoods and languages: a SPARK-STREAM learning and communications process, by Kath Copley and William Savage. Towards broader contextual understandings of livelihoods, by Elizabeth M. Gonzales, Nguyen Song Ha, Rubu Mukherjee, Nilkanth Pokhrel and Sem Viryak. Using tools to build shared understandings, using a sustainable livelihoods framework to learn, by Nuchjaree Langkulsane. Learning about rattan as a livelihood, by Mariel de Jesus and Christine Bantug. Meanings of “community-managed area,” by Arif Aliadi. Lessons learnt about processes for learning and communicating, by Graham Haylor and Ronet Santos.
Resumo:
Navassa is a small, undeveloped island in the Windward Passage between Jamaica and Haiti. It was designated a National Wildlife Refuge under the jurisdiction of the U.S. Fish and Wildlife Service in 1999, but the remote location makes management and enforcement challenging, and the area is regularly fished by artisanal fishermen from Haiti. In April 2006, the NOAA Center for Coastal Fisheries and Habitat Research conducted a research cruise to Navassa. The cruise produced the first high-resolution multibeam bathymetry for the area, which will facilitate habitat mapping and assist in refuge management. A major emphasis of the cruise was to study the impact of Haitian fishing gear on benthic habitats and fish communities; however, in 10 days on station only one small boat was observed with five fishermen and seven traps. Fifteen monitoring stations were established to characterize fish and benthic communities along the deep (28-34 m) shelf, as these areas have been largely unstudied by previous cruises. The fish communities included numerous squirrelfishes, triggerfishes, and parrotfishes. Snappers and grouper were also present but no small individuals were observed. Similarly, conch surveys indicated the population was in low abundance and was heavily skewed towards adults. Analysis of the benthic photoquadrats is currently underway. Other cruise activities included installation of a temperature logger network, sample collection for stable isotope analyses to examine trophic structure, and drop camera surveys to ground-truth habitat maps and overhead imagery. (PDF contains 58 pages)
Ongoing monitoring of Tortugas Ecological Reserve: Assessing the consequences of reserve designation
Resumo:
Over the past five years, a biogeographic characterization of Tortugas Ecological Reserve(TER) has been carried out to measure the post-implementation effects of TER as a refuge for exploited species. Our results demonstrate that there is substantial microalgal biomass at depths between 10 and 30 m in the soft sediments at the coral reef interface, and that this community may play an important role in the food web supporting reef organisms. In addition, preliminary stable isotope data, in conjunction with prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be an important source of the primary production ultimately fueling fish production throughout TER. The majority of the fish analyzed so far have exhibited a C isotope signature consistent with a food web which relies heavily on benthic primary production. Fish counts indicate a marked increase in the abundance of large fish (>20 cm) within the Reserve relative to the Out and Park strata, across years. Faunal collections from open and protected soft bottom habitat near the northern boundary of Tortugas North strongly suggest that relaxation of trawling pressure has increased benthic biomass and diversity in this area of TER. These data, employing an integrated Before - After Control Impact (BACI) design at multiple spatial scales, will allow us to continue to document and quantify the post-implementation effects of TER. (PDF contains 58 pages)
Resumo:
As more people discover coastal and marine protected areas as destinations for leisure-time pursuits, the task of managing coastal resources while providing opportunities for high quality visitor experiences becomes more challenging. Many human impacts occur at these sites; some are caused by recreation and leisure activities on-site, and others by activities such as agriculture, aquaculture, or residential and economic development in surrounding areas. Coastal management professionals are continually looking for effective ways to prevent or mitigate negative impacts of visitor use. (PDF contains 8 pages) Most coastal and marine protected area managers are challenged with balancing two competing goals—protection of natural and cultural resources and provision of opportunities for public use. In most cases, some level of compromise between the goals is necessary, where one goal constrains or “outweighs” the other. Often there is a lack of clear agreement about the priority of these competing goals. Consequently, while natural resource decisions should ultimately be science-based and objective, such decisions are frequently made under uncertainty, relying heavily upon professional judgment. These decisions are subject to a complex array of formal and informal drivers and constraints—data availability, timing, legal mandate, political will, diverse public opinion, and physical, human, and social capital. This paper highlights assessment, monitoring, and planning approaches useful to gauge existing resource and social conditions, determine feasibility of management actions, and record decision process steps to enhance defensibility. Examples are presented from pilot efforts conducted at the Rookery Bay National Estuarine Research Reserve (NERR) and Ten Thousand Islands National Wildlife Refuge (NWR) in South Florida.
Resumo:
Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.)
Resumo:
The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)
Resumo:
The incidence of four discrete characters of individual sockeye salmon -two genetically inherited proteins (PGM-1*and PGM-2*), freshwater age at migration, and the presence of the brain-tissue parasite Myxobolus arcticus-in weekly samples from two Alaskan fisheries (Noyes Island in 1986 and Sumner Strait in 1987) were used to infer stock composition of the catches based on corresponding character samples from 73 Alaskan and Canadian stocks. Estimated contributions of 13 stock groups, formed on the basis of character similarity of their members, were roughly consistent with expectations from tagging experiments, knowledge of stock magnitudes, and similar assessments from scales. Imprecision of the estimated contributions by the 13 stock groups limited their practical value; but variability was much reduced for combined estimated contributions by two inclusive categories, namely stock groups whose members had either high or low brainparasite prevalence. Noyes Island catches consisted predominantly of unparasitized fish, most of which were probably of Canadian origin. The majority of Sumner Strait catches consisted of parasitized fish, whose freshwater origins may have been in Alaska or Canada. (PDF file contains 27 pages.)
Resumo:
Over the last several years, concern has increased about the amount of man-made materials lost or discarded at sea and the potential impacts to the environment. The scope of the problem depends on the amounts and types of debris. One problem in making a regional comparison of debris is the lack of a standard methodology. The objective of this manual is to discuss designs and methodologies for assessment studies of marine debris. This manual has been written for managers, researchers, and others who are just entering this area of study and who seek guidance in designing marine debris surveys. Active researchers will be able to use this manual along with applicable references herein as a source for design improvement. To this end, the authors have synthesized their work and reviewed survey techniques that have been used in the past for assessing marine debris, such as sighting surveys, beach surveys, and trawl surveys, and have considered new methods (e.g., aerial photography). All techniques have been put into a general survey planning framework to assist in developing different marine debris surveys. (PDF file contains 100 pages.)
Resumo:
Rougheye rockfish (Sebastes aleutianus) and shortraker rockfish (Sebastes borealis) were collected from the Washington coast, the Gulf of Alaska, the southern Bering Sea, and the eastern Kamchatka coast of Russia (areas encompassing most of their geographic distribution) for population genetic analyses. Using starch gel electrophoresis, we analyzed 1027 rougheye rockfish and 615 shortraker rockfish for variation at 29 proteincoding loci. No genetic heterogeneity was found among shortraker rockfish throughout the sampled regions, although shortraker in the Aleutian Islands region, captured at deeper depths, were found to be significantly smaller in size than the shortraker caught in shallower waters from Southeast Alaska. Genetic analysis of the rougheye rockfish revealed two evolutionary lineages that exist in sympatry with little or no gene f low between them. When analyzed as two distinct species, neither lineage exhibited heterogeneity among regions. Sebastes aleutianus seems to inhabit waters throughout the Gulf of Alaska and more southern waters, whereas S. sp. cf. aleutianus inhabits waters throughout the Gulf of Alaska, Aleutian Islands, and Asia. The distribution of the two rougheye rockfish lineages may be related to depth where they are sympatric. The paler color morph, S. aleutianus, is found more abundantly in shallower waters and the darker color morph, Sebastes sp. cf. aleutianus, inhabits deeper waters. Sebastes sp. cf. aleutianus, also exhibited a significantly higher prevalence of two parasites, N. robusta and T. trituba, than did Sebastes aleutianus, in the 2001 samples, indicating a possible difference in habitat and (or) resource use between the two lineages.
Resumo:
One particular habitat type in the Middle Atlantic Bight is not well recognized among fishery scientists and managers, although it is will known and used by recreational and commercial fisheries. This habitat consists of a variety of hard-surface, elevated relief "reef" or reef-like environments that are widely distributed across the predominantly flat or undulating, sandy areas of the Bight and include both natural rocky areas and man-made structures, e.g. shipwrecks and artificial reefs. Although there are natural rock and shellfish reefs in southern New England coastal waters and estuaries throughout the Bight, most reef habitats in the region appear to be man-made reef habitat modification/creation may be increasing. Very little effort has been devoted to the study of this habitat's distribution, abundance, use by living marine resources and associated biological communities (except on estuarine oyster reefs) and fishery value or management. This poorly studied and surveyed habitat can provide fish refuge from trawls and can be a factor in studies of the distribution and abundance of a variety of reef-associated fishery resources. This review provides a preliminary summary of information found on relative distribution and abundance of reef habitat in the Bight, the living marine resources and biological communities that commonly use it, threats to this habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat managers. The purpose of the review is to initiate an awareness among resource managers about this habitat, its role in resource management, and the need for research.
Resumo:
This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.
Resumo:
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.