151 resultados para Brigida de Suecia, Santa, ca. 1303-1373
Resumo:
In March 2007 CSU-Monterey Bay began hydrologic monitoring of Santa Lucia Preserve for the Santa Lucia Conservancy. This project is a continuation of monitoring begun by Balance Hydrologics as part of the permit requirements for land development. The purpose of this annual report is to present data summaries for the 2007 water year (October 1, 2006 to September 31, 2007). Rainfall in water year 2007 was very low, representing the 15 year drought rainfall. Streamflow was relatively low as well as indicated by baseflow conditions approaching the drought conditions of water-year 1991 (Croyle and Smith, 2007). Document contains 30 pages)
Resumo:
This report presents the results of the 2007 baseflow condition surveys of the four major streams flowing through Santa Lucia Preserve- Las Garzas, Portrero, San Jose, and San Clemente Creeks. This report has been prepared for the Santa Lucia Conservancy and is primarily intended for the staff of Monterey County and California Department of Fish and Game, in accordance with the baseflow monitoring and reporting requirements outlined in County Conditions 14 and 15. The scope of this report is limited to the presentation and evaluation of existing baseflow conditions as required by Conditions 14 and 15, and is not intended as a comprehensive analysis. However, data presented here are an important part of the long term data set that will be used for future in depth watershed analyses. (Document contains 13 pages & 14 figs)
Resumo:
(PDF contains 76 pages)
Resumo:
(Document pdf contains 25 pages)
Resumo:
(Document pdf contains 16 pages)
Resumo:
(PDF contains 5 pages)
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1983 El Nino resulted in a decrease in the flux of diatoms and planktonic foraminiferans into the Santa Barbara basin. These may both be related to the decrease in productivity and therefore standing crops of these two groups.
Resumo:
A distinct, 1- to 2-cm-thick flood deposit found in Santa Barbara Basin with a varve-date of 1605 AD ± 5 years testifies to an intensity of precipitation that remains unmatched for later periods when historical or instrumental records can be compared against the varve record. The 1605 AD ± 5 event correlates well with Enzel's (1992) finding of a Silver Lake playa perennial lake at the terminus of the Mojave River (carbon-14-dated 1560 AD ± 90 years), in relative proximity to the rainfall catchment area draining into Santa Barbara Basin. According to Enzel, such a persistent flooding of the Silver Lake playa occurred only once during the last 3,500 years and required a sequence of floods, each comparable in magnitude to the largest floods in the modern record. To gain confidence in dating of the 1605 AD ± 5 event, we compare Southern California's sedimentary evidence against historical reports and multi-proxy time-series that indicate unusual climatic events or are sensitive to changes in large-scale atmospheric circulation patterns. The emerging pattern supports previous suggestions that the first decade of the 17th century was marked by a rapid cooling of the Northern Hemisphere, with some indications for global coverage. A burst of volcanism and the occurrence of El Nino seem to have contributed to the severity of the events. The synopsis of the 1605 AD ± 5 years flood deposit in Santa Barbara Basin, the substantial freshwater body at Silver Lake playa, and much additional paleoclimatic, global evidence testifies for an equatorward shift of global wind patterns as the world experienced an interval of rapid, intense, and widespread cooling.
Resumo:
Dating of annually varved sediments of Santa Barbara Basin down to AD 1650 in absence of precise radiometric methods was achieved by (1) counting varves and determining mean annual sedimentation rates from x-radiographs, and (2) correlation with historical rainfall and tree-ring records.
Resumo:
A 1844-1987 time-series of carbon stable isotope ratios from dated sedimentary total organic carbon from the center of the Santa Barbara basin is compared with historical climate and oceanographic records. Carbon derived from carbon-13-depleted phytoplankton and carbon-13-enriched kelp appear responsible for a large part of the isotopic variance in sedimentary total organic carbon. El Niño/Southern Oscillation events are recorded by the isotopic response of marine organic carbon in sediments.
Resumo:
Sediments in Santa Barbara Basin contain microfossil and sedimentological information that allows reconstruction of major features of the California Current such as water temperature, strength of upwelling, and productivity. ... Until now, investigations of Santa Barbara Basin sediments have utilized analytical techniques that could not resolve seasonal laminae, permitting annual resolution of variations in sediment composition and structure only. ... Based on a successful technique for preparation of epoxy-embedded and highly polished thin-sections that permit economical optical and electron microscope evaluation of laminated sequences, it is our long-term goal to reconstruct, with unprecedented detail, the history of sedimentation processes in the Santa Barbara Basin by developing ultra-high-resolution time series of biotic and detrital proxies.
Resumo:
Like pages of a "natural coastal diary", successive layers of anoxic varved sediment in the central Santa Barbara Basin have been used by paleoceanographers to reconstruct aspects of past coastal climate. This report focuses on the end of the "Little Ice Age" (15th to 19th century) and on the beginning of this century, a period known to encompass extreme climate excursions and weather events in the Santa Barbara Basin and other parts of Southern California. El Niño events are known to disrupt Southern California's coastal ecosystems and to cause anomalous weather conditions, but El Niño events in Southern California before 1990 have been largely undocumented.
Resumo:
Annual radiolarian flux (1954-1986) extrapolated from varved Santa Barbara Basin sediments was compared to instrumental data to examine the effect of interannual climate variability. Paleo-reconstructions over large geographic areas or 10^3 years and longer typically rely on changes in species composition to signal environment or climate shifts. In the relatively short period studied, climate fluctuations were insufficient to significantly alter the assemblage, but there was considerable variability in the total flux of radiolarians. This variability, greatest on 5- to 25-year time scales, appears to be linked to regional climate variability. Total flux correlates to regional California sea surface temperature and the composite of sea level pressure over the Northern Hemisphere for years of high radiolarian flux resembles positive PNA circulation.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.