267 resultados para Atlantic Beach
Resumo:
Currently completing its fifth year, the Coastal Waccamaw Stormwater Education Consortium (CWSEC) helps northeastern South Carolina communities meet National Pollutant Discharge Elimination System (NPDES) Phase II permit requirements for Minimum Control Measure 1 - Public Education and Outreach - and Minimum Control Measure 2 - Public Involvement. Coordinated by Coastal Carolina University, six regional organizations serve as core education providers to eight coastal localities including six towns and cities and two large counties. CWSEC recently finished a needs assessment to begin the process of strategizing for the second NPDES Phase II 5-year permit cycle in order to continue to develop and implement effective, results-oriented stormwater education and outreach programs to meet federal requirements and satisfy local environmental and economic needs. From its conception in May 2004, CWSEC set out to fulfill new federal Clean Water Act requirements associated with the NPDES Phase II Stormwater Program. Six small municipal separate storm sewer systems (MS4s) located within the Myrtle Beach Urbanized Area endorsed a coordinated approach to regional stormwater education, and participated in a needs assessment resulting in a Regional Stormwater Education Strategy and a Phased Education Work Plan. In 2005, CWSEC was formally established and the CWSEC’s Coordinator was hired. The Coordinator, who is also the Environmental Educator at Coastal Carolina University’s Waccamaw Watershed Academy, organizes six regional agencies who serve as core education providers for eight coastal communities. The six regional agencies working as core education providers to the member MS4s include Clemson Public Service and Carolina Clear Program, Coastal Carolina University’s Waccamaw Watershed Academy, Murrells Inlet 2020, North Inlet-Winyah Bay National Estuarine Research Reserve’s Coastal Training and Public Education Programs, South Carolina Sea Grant Consortium, and Winyah Rivers Foundation’s Waccamaw Riverkeeper®. CWSEC’s organizational structure results in a synergy among the education providers, achieving greater productivity than if each provider worked separately. The member small MS4s include City of Conway, City of North Myrtle Beach, City of Myrtle Beach, Georgetown County, Horry County, Town of Atlantic Beach, Town of Briarcliffe Acres, and Town of Surfside Beach. Each MS4 contributes a modest annual fee toward the salary of the Coordinator and operational costs. (PDF contains 3 pages)
Resumo:
On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)
Resumo:
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species
Resumo:
In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.
Resumo:
In May 2001, the National Marine Fisheries Service (NMFS) opened two areas in the northwestern Atlantic Ocean that had been previously closed to the U.S. sea scallop (Placopecten magellanicus) dredge fishery. Upon reopening these areas, termed the “Hudson Canyon Controlled Access Area” and the “Virginia Beach Controlled Access Area,” NMFS observers found that marine turtles were being caught incidentally in scallop dredges. This study uses the generalized linear model and the generalized additive model fitting techniques to identify environmental factors and gear characteristics that influence bycatch rates, and to predict total bycatch in these two areas during May-December 2001 and 2002 by incorporating environmental factors into the models. Significant factors affecting sea turtle bycatch were season, time-of-day, sea surface temperature, and depth zone. In estimating total bycatch, rates were stratified according to a combination of all these factors except time-of-day which was not available in fishing logbooks. Highest bycatch rates occurred during the summer season, in temperatures greater than 19°C, and in water depths from 49 to 57 m. Total estimated bycatch of sea turtles during May–December in 2001 and 2002 in both areas combined was 169 animals (CV=55.3), of which 164 (97%) animals were caught in the Hudson Canyon area. From these findings, it may be possible to predict hot spots for sea turtle bycatch in future years in the controlled access areas.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. Photo caption: The tide rises 20 feet at high tide; at low tide the boats are used as stores to market goods.
Resumo:
This is an identification guide for cetaceans (whales, dolphins, and porpoises). It was designed to assist laypersons in identifying cetaceans encountered in the western North Atlantic Ocean and was intended for use by ongoing cetacean observer programs. This publication includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices cover tags used on cetacean species; how to record and report cetacean observations at see and for stranded cetaceans; and a list of contacts for reporting cetacean strandings. (Document pdf contains 183 pages - file takes considerable time to open)
Resumo:
(Document pdf contains 9 pages)
Resumo:
(Document pdf contains 19 pages)
Resumo:
(Document pdf contains 16 pages)
Resumo:
(Document pdf contains 22 pages)
Resumo:
This study presents the third post-nourishment survey (January 1989) results for the Sand Key Phase II beach nourishment project carried out in June, 1988. The monitoring program to this beach nourishment project is a joint effort between the University of South Florida and University of Florida. The field surveys include a total of 26 profiles, encompassing approximately 3 miles of shoreline extending from DNR R-96 to R-1ll. The total calculated volume loss of sand in the nourished segment (from R-99G to R-107) between the July 88 and January 89 surveys is 51,113 cubic yards, which is a loss about 9.7 percent of 529,150 cubic yards actually placed in the nourishment project. The total loss of sand computed in the entire survey area is 26,796 cubic yards, which is only 5.1 percent of the sand placed in the nourishment project. It is stressed that a part of these net volume reductions is due to the background erosion and not due to spreading losses induced by the nourishment project. (PDF contains 168 pages.)
Resumo:
Recently there has been much activity in reclaiming the low-lying coastal areas of Dade County for residential use, by the addition of fill. The fill is obtained by digging canals both normal to and parallel to Biscayne Bay. The canals serve the additional purpose of providing an access to the Bay for boats. A problem needing to be considered is the effect that these canals will have on the ground-water resources. It is expected that the canals will have little effect on ground water in parts of the county distant from the coast, but their effect in coastal areas is a matter of concern. In order to predict what, may happen in the vicinity of these new canals if they are not equipped with adequate control structures, it is instructive to review what has happened in the vicinity of similar canals in the past. The U. S. Geological Survey, in cooperation with Dade County, the cities of Miami and Miami Beach, the Central and Southern Florida Flood Control District, and the Florida Geological Survey has collected water-level and salinity data on wells and canals in Dade County since 1939. Some of the agencies named, and others, collected similar data before 1939. Analysis of all the data shows that sea water in the Atlantic Ocean and Biscayne Bayis the sole source of salt-water contamination in the Biscayne aquifer of the Dade County area. (PDF has 19 pages.)
Resumo:
(PDF has 6 pages.)
Resumo:
The migratory population of striped bass (Morone saxatilis) (>400 mm total length[TL]) spends winter in the Atlantic Ocean off the Virginia and North Carolina coasts of the United States. Information on trophic dynamics for these large adults during winter is limited. Feeding habits and prey were described from stomach contents of 1154 striped bass ranging from 373 to 1250 mm TL, collected from trawls during winters of 1994-96, 2000, and 2002-03, and from the recreational fishery during 2005-07. Nineteen prey species were present in the diet. Overall, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli) dominated the diet by boimass (67.9%) and numerically (68.6%). The percent biomass of Atlantic menhaden during 1994-2003 to 87.0% during 2005-07. Demersal fish species such as Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) represented <15% of the diet biomass, whereas alosines (Alosa spp.) were rarely observed. Invertebrates were least important, contributing <1.0% by biomass and numerically. Striped bass are capable of feeding on a wide range of prey sizes (2% to 43% of their total length). This study outlines the importance of clupeoid fishes to striped bass winter production and also shows that predation may be exerting pressure on one of their dominant prey, the Atlantic menhaden.