23 resultados para Arabic poetry--History and criticism
Resumo:
ENGLISH: The egg of the anchoveta, Cetengraulis mysticetus (Günther), was identified in the Gulf of Panama by its size, difference in diurnal period of spawning, seasonal occurrence (October to January) and relative abundance. It is pelagic, translucent and oval with mean dimensions of 1.166 mm. and 0.558 mm. for the long and short axes respectively. The egg membrane is unsculptured, the yolk mass is markedly segmented, and no oil globule or pigmentation is present. It was not found in the plankton from mid-January 1957 until the latter part of the following September; during this period the gonads of the anchoveta were immature. Only one other anchovy egg, spawned during the same diurnal period, is sufficiently similar in dimensions to be confused with that of the anchoveta; however, it is slightly smaller. SPANISH: El huevo de la anchoveta, Cetengraulis mysticetus (Günther), fué identificado en el Golfo de Panamá por su tamaño, diferencias en el período diario de desove, su abundancia en la temporada (de octubre a enero) y por su abundancia relativa. El huevo es pelágico, translúcido, oval y con dimensiones promedio de 1.166 mm. y 0.558 mm. para los ejes largo y corto, respectivamente. La membrana es lisa, el vitelo está francamente segmentado y no posee ningún glóbulo graso o pigmentación. El huevo de la anchoveta no se encontró en el plancton en el período comprendido entre mediados de enero y fines de septiembre de 1957; durante este lapso las gónadas estuvieron inactivas.
Resumo:
ENGLISH: Howard and Landa (1958) and Barrett and Howard (1961) have studied the life history of the anchoveta in most of the areas where this species occurs in important quantities. The Gulf of Panama was the only area of Panama included in these studies, as this was the only one from which sufficient samples were available. Berdegue (1958) compared certain meristic and morphometric characters of anchovetas from Montijo Bay and nine other areas of the eastern tropical Pacific Ocean. He found statistically significant differences, and concluded that the fish of the different areas belonged to separate "populations." Fish from Chiriquí province were not included in his study. Since the, completion of the above-mentioned studies, a number of collections of anchovetas from Montijo Bay and Chiriquí province have been obtained. In the present report use is made of this material to determine the salient facts regarding the life history of the anchoveta from these areas and to supplement the available knowledge of the identity of the intraspecific groups. Acknowledgment is extended to Dr. Milner B. Schaefer, formerly Director of Investigations, Inter-American Tropical Tuna Commission (now Director, Institute of Marble Resources, University of California), Mr. Clifford L. Peterson, Assistant Director of Investigations, and Mr. Edward F. Klima (now with the U. S. Bureau of Commercial Fisheries) for advice and assistance rendered to the project. The shrimp-boat samples were collected by Captains Robert Barrett, Stephen Barrett, and Chester McLean. SPANISH: Howard y Landa (1958) y Barrett y Howard (1961) han estudiado la historia natural de la anchoveta en la mayoría de las áreas en donde esta especie aparece en cantidades importantes. El Golfo de Panamá es la única area de Panamá incluida en estos estudios, ya que es la única de la cual hubo suficientes muestras disponibles. Berdegué (1958) camparó ciertos caracteres merístieos y morfométricos de la anehoveta del Golfo de Montijo y otras nueve áreas del Océano Pacífico Oriental Tropical. Encontró diferencias estadísticamente significativas e hizo la conclusión de que los peces de las diferentes áreas pertenecían a "poblaciones" separadas. Los peces de la Provincia de Chiriquí no fueron incluidos en su estudio. Desde la terminación de los estudios antes meneionados se obtuvieron varias recolecciones de anchovetas del Golfo de Montijo y de la Provincia de Chiriquí. En el presente informe se usó este material para determinar los hechos sobresalientes referentes a la historia natural de la anchoveta de estas áreas y suplir el conocimiento disponible de la identidadde los grupos intraespecíficos. Se hace extensivo un reconocimiento al Dr. Milner B. Schaefer, antiguo director de investigaciones de la Comisión Interamericana del Atún Tropical (ahora director del Institute of Marine Resources, University of California), al Sr. Clifford L. Peterson, asistente del director de investigaciones, y al Sr. Edward F. Klima (ahora can el U. S. Bureau of Commercial Fisheries) por su consejo y ayuda prestados en este proyecto. Las muestras de los barcos camaroneros fueron reeolectadas por los capitanes Robert Barrett, Stephen Barrett y Chester McLean
Resumo:
To improve the cod stocks in the Baltic Sea, a number of regulations have recently been established by the International Baltic Sea Fisheries Commission (IBSFC) and the European Commission. According to these, fishermen are obliged to use nets with escape windows (BACOMA nets) with a mesh size of the escape window of 120 mm until end of September 2003. These nets however, retain only fish much larger than the legal minimum landing size would al-low. Due to the present stock structure only few of such large fish are however existent. As a consequence fishermen use a legal alternative net. This is a conventional trawl with a cod-end of 130 mm diamond-shaped meshes (IBSFC-rules of 1st April 2002), to be increased to 140 mm on 1st September 2003, according to the mentioned IBSFC-rule. Due legal alterations of the net by the fishermen (e.g. use of extra stiff net material) these nets have acquired extremely low selective properties, i. e. they catch very small fish and produce great amounts of discards. Due to the increase of the minimum landing size from 35 to 38 cm for cod in the Baltic, the amount of discards has even increased since the beginning of 2003. Experiments have now been carried out with the BACOMAnet on German and Swedish commercial and research vessels since arguments were brought forward that the BACOMA net was not yet sufficiently tested on commercial vessels. The results of all experiments conducted so far, are compiled and evaluated here. As a result of the Swedish, Danish and German initiative and research the European Commission reacted upon this in June 2003 and rejected the increase of the diamond-meshed non-BACOMA net from 130 mm to 140mm in September 2003. To protect the cod stocks in the Baltic Sea more effectively the use of traditional diamond meshed cod-ends with-out escape window are prohibited in community waters without derogation, becoming effective 1st of September 2003. To enable more effective and simplified control of the bottom trawl fishery in the Baltic Sea the principle of a ”One-Net-Rule“ is enforced. This is going to be the BACOMA net, with the meshes of the escape window being 110 mm for the time being. The description of the BACOMA net as given in the IBSFC-rules no.10 (revision of the 28th session, Berlin 2002) concentrates on the cod-end and the escape window but only to a less extent on the design and mesh-composition of the remaining parts of the net, such as belly and funnel and many details. Thus, the present description is not complete and leaves, according to fishermen, ample opportunity for manipulation. An initiative has been started in Germany with joint effort from scientists and the fishery to better describe the entire net and to produce a proposal for a more comprehensive description, leaving less space for manipulation. A proposal in this direction is given here and shall be seen as a starting point for a discussion and development towards an internationally uniform net, which is agreed amongst the fishery, scientists and politicians. The Baltic Sea fishery is invited to comment on this proposal, and recommendations for further improvement and specifications are welcomed. Once the design is agreed by the Baltic Fishermen Association, it shall be proposed to the IBSFC and European Commission via the Baltic Fishermen Association.
Resumo:
Lake Chad is a very large, shallow eutrophic lake shared by Chad, Nigeria, Niger and Cameroun. It supplies approximately 13% of Nigeria's inland fish. It however lies in an unstable ecological environment characterised by intermittent period of rainfall and drought. This creates a very large draw down area. Consequently, the fisheries are affected by the oscillation in the size of lake due to the drought. Other factors affecting the volume of water are the numerous dams on the inflow rivers. The fishery is also subjected to intense overfishing and may be affected by pollution and other land use practices. The paper discusses changes that took place over the years as a result of the factors of drought, effect of dams on the inflow rivers. The fishery is also subjected to intense overfishing and may be affected by pollution and other land use practices. The paper discusses changes that took place over the years as a result of the factors of drought, effects of dams and overexploitation. Previous records of fish production, species composition and distribution, the status of the fish stocks, their sizes are compared with more recent data. The status of the fishery before and after the contraction of the lake is discussed. Suggestion for a national exploitation of the lake based on habitat improvement, increasing the volume of the water in the lake through controlled use of the influent rivers as well as reduction in overfishing are made
Resumo:
This article is intended to open a discussion about the historical development of lakes Zirahuen, Patzcuaro and Cuitzeo in the state of Michoacan, and the postulated relationships between lake ecology and evolution. Dr Fernando De Buen was the first man dedicated to limnology in Mexico who came to the country in the 1930s. He was adviser at the Estacion Limnologica de Patzcuaro and wrote outstanding papers dealing with Mexican lakes. The lakes of Michoacan probably formed in the late Pliocene or Holocene, and were part of a tributary to the Lerma River, which became isolated by successive volanic barriers to form lake basins. Lake Zirahuen is a warm monomictic waterbody with unique water dynamics amongst the Michoacan lakes. Because it is relatively deep (max depth 40m), seasonal patterns of alternating circulation and thermal stratification develop in the lake, a feature not shared by the other two polymictic shallow lakes, Patzcuaro and Cuitzeo.
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
This brief reports highlights the significance of scale readings of salmon. The reasons for colour change of scales and scale rings are briefly explained. Scale readings of salmon fry from the River Lune in the north west of England are presented. The salmon was captured in 1957/58.
Resumo:
Sand sole, Psettichthys melanostictus, is a small but important part of the west coast groundfish fishery. It has never been assessed and there is a limited amount of biological data for the species. We provide the first estimates of age and growth for California populations and compare them with studies from other areas. We found that sand sole is a rapidly growing species which may show a strong latitudinal gradient in growth rate. We also found evidence of a recent, strong cohortrelated shift in the sex ratio of the population towards fewer females. In addition we examined data from the Washington, Oregon, and California commercial fishery to make an initial determination of population status. We found that catch per unit of effort in commercial trawls experienced a decline over time but has rebounded in recent years, except central California (the southern part of its commercial range), where the decline has not reversed.
Resumo:
This paper provides an historical review of homarid lobster fisheries, the development and usage of lobster hatcheries, and much of the research influenced by hatchery-initiated studies on natural history, physiology, and morphological development of the lobster, Homarus spp. Few commercial lobster hatcheries exist in the world today, yet their potential usage in restocking efforts in various countries is constantly being reexamined, particularly when natural stocks are considered “overfished.” Furthermore, many individual researchers working on homarid lobsters use smallscale hatchery operations to provide the animals necessary for their work as well as animals reared and provided by various governmental agencies interested in specific projects on larvae, postlarvae, or juveniles. Such researchers can benefi t from the information in this review and can avoid many pitfalls previously documented. The development of hatcheries and the experimental studies that were generated from their activities have had a direct impact on much of the research on lobsters. The past work arising from hatchery operations—descriptions of life stages, behavior, physiology, etc.—has generally been confirmed rather than refuted and has stimulated further research important for an understanding of the life history of homarid lobsters. The connections between homarid fisheries and hatchery operations (i.e. culturing of the lobsters), whether small- or large-scale for field and laboratory research, are important to understand so that better tools for fishery management can be developed. This review tries to provide such connections. However, the rearing techniques in use in today’s hatcheries—most of which are relics from the past—are clearly not effi cient enough for large-scale commercial aquaculture of lobsters or even for current restocking efforts practiced by several countries today. If hatcheries are to be used to supplement homarid stocks, to restock areas that were overfished, or to reintroduce species into their historical ranges, there is a clear need to further develop culture techniques. This review should help in assessments of culturing techniques for Homarus spp. and provide a reference source for researchers or governmental agencies wishing to avoid repeating previous mistakes.
Resumo:
In the history of whaling from prehistoric to modern times, the large whales, sometimes called the “great whales,” were hunted most heavily owing in part to their corresponding value in oil, meat, and baleen. Regional populations of North Atlantic right whales, Eubalaena glacialis glacialis, were already decimated by 1700, and the North Atlantic gray whale, Eschrichtius robustus, was hunted to extinction by the early 1700’s (Mitchell and Mead1).
Resumo:
Historically, America's use and enjoyment of the oyster extend far back into prehistoric times. The Native Americans often utilized oysters, more intensively in some areas than in others, and, at least in some areas of the Caribbean and Pacific coast, the invading Spanish sought oysters as eagerly as they did gold-but for the pearls. That was the pearl oyster, Pinctada sp., and signs of its local overexploitation were recorded early in the 16th century. During the 1800's, use of the eastern oyster grew phenomenally and, for a time, it outranked beef as a source of protein in some parts of the nation. Social events grew up around it, as it became an important aspect of culture and myth. Eventually, research on the oyster began to blossom, and scientific literature on the various species likewise bloomed-to the extent that when the late Paul Galtsoff wrote his classic treatise "The American oyster Crassostrea virginica Gmelin" in 1954, he reported compiling an extensive bibliography of over 6,000 subject and author cards on oysters and related subjects which he deposited in the library of the Woods Hole Laboratory of the Bureau of Commercial Fisheries (now NMFS). That large report, volume 64 (480 pages) of the agency's Fishery Bulletin, was a bargain at $2.75, and it has been a standard reference ever since. But the research and the attendant literature have grown greatly since Galtsoff's work was published, and now that has been thoroughly updated.
Resumo:
The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff. Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.
Resumo:
A benthic survey was carried out from November 1998 to December 1999 in the tidal flats of Bahía Samborombón (Río de la Plata estuary, Argentina), in order to study the population structure, reproductive aspects, growth and secondary production of Capitella capitata (Fabricius, 1780). Growth was analyzed using ELEFAN routine, and the secondary production was estimated by Hynes and Coleman's method (1968). C. capitata did not present periods of very important recruitments throughout the year; however, the abundance of smallest size classes was higher during summer and autumn. The summer cohort showed a growth rate (K) of 2.05 and a seasonal growth oscillation (C) of 0.6, pointing out that worms grew very slowly during winter months. The life span of this cohort was 13 months. The autumn cohort showed a lower growth rate (K= 1.5) and its growth was lowest during winter. The life span was 15 months for this cohort. C. capitata in Punta Rasa presented an extended reproductive period, with absence of activity during winter months. The type of eggs and larvae suggest that C. capitata has benthic larval development in the study area, destining its reproductive effort to the production of a low number of eggs, and assuring larvae survival through incubation in brooding tubes. The annual mean biomass in Punta Rasa was 0.117 g m-2 (AFDW), with a mean secondary production of 0.23 g m-2 y-1 and a P/B ratio of 1.96 y-1. The relatively low density, biomass production and P/B ratio of C. capitata in Punta Rasa can be considered as reference values for this species inhabiting undisturbed or moderately disturbed areas.