66 resultados para Anura -- Ecology -- Australia, Eastern
Resumo:
Rangia and marsh clams, Rangia cuneata, R. flexuosa, and Polymesoda caroliniana, occur in brackish waters along México’s eastern coast from the northern State of Tamaulipas to the southern State of Campeche. The clams were important to the prehispanic people in the southern part of the State of Veracruz, where they were used as food and as construction material. In modern times, they are harvested for food. The fishermen wade in shallow water and harvest the clams in soft sediments by hand. Annual landings of whole clams during a recent 5-yr period, 1998–2002, were 1,139–1,695 t. The only area with a substantial ongoing clam fishery is in the Lower Papaloapan River Basin, including Alvarado Lagoon, where as many as 450 fishermen are licensed harvesters. This fishery for the Rangia and marsh clams is the most important clam fishery along México’s Gulf Coast.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
Mexico has an oyster industry of substantial size, ranking about sixth in the world. In 1993, among the top ten oyster producers, Korea, Japan, the United States, China, and France ranked ahead of Mexico, while the Philippines, Australia, Canada, and New Zealand trailed it (Fig. 1). On its east coast, the species landed is the eastern oyster, Crassostrea virginica, while on its west coast C. corteziensis, C. iridescens, and the Pacific oyster, C. gigas, are landed. During the last 10-15 years, annual production often was at least 50,000 t of shelled oysters, or nearly 1.5 million bushels (Anonymous, 1995), with the great preponderance (90%) coming from a series of lagoons connecting with the Gulf of Mexico along the east coast (Fig. 2) and the remainder produced on the west coast.
Resumo:
This is an identification guide for cetaceans (whales, dolphins, and porpoises), that was designed to assist laymen in identifying cetaceans encountered in eastern North Pacific and Arctic waters. It was intended for use by ongoing cetacean observer programs. This is a revision of an earlier guide with the same title published in 1972 by the Naval Undersa Center and the National Marine Fisheries Service. It includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices include illustrations of tags on whales, dolphins, and porpoises, by Larry Hobbs; how to record data from observed cetaceans at sea and for stranded cetaceans; and a list of cetacean names in Japanese and Russian. (Document contains 245 pages - file takes considerable time to open)
Resumo:
The Hawkesbury-Nepean River in New South Wales (NSW), Australia, is the largest river system in the Sydney metropolitan area, and it drains most of the developing areas to the west. This catchment is under increasing pressure from urban expansion and the river frequently experiences extended periods of low flows due to a combination of extensive river regulation and the Australian temperate climate. Added to this, the river and several of its tributaries receive treated sewage and stormwater from various sources. Habitats and biota within the Hawkesbury-Nepean River catchment have been altered since European settlement and many introduced species have spread throughout the terrestrial and aquatic environment (Recher et al. 1993). Submersed macrophyte assemblages within the river have undergone significant changes in their distribution and abundance due to eutrophication, habitat alteration and changes to river flows (Recher et al 1993). Anecdotal evidence and some early unpublished studies suggest that egeria (Egeria densa Planchon), introduced from South America as an aquarium plant, was present in the Hawkesbury-Nepean River prior to 1980. Sainty (1973) reported a persistent and troublesome infestation over a number of years at Wallacia in the upper Nepean River. Here, as part of a larger study on the ecology of macrophyte and invertebrate assemblages associated with anthropogenic disturbance in the Hawkesbury-Nepean River, we document the rapid spread of egeria since 1994. Significant increases in egeria biomass were also found, and we present preliminary evidence which suggest that the native ribbonweed, vallisneria (Vallisneria americana Michx.) is being displaced.
Resumo:
Estimates of length at birth and early postnatal growth are made for the northern and southern populations of the offshore spotted dolphin in the offshore eastern tropical Pacific. Length at birth is estimated to be 85.4 cm for the northern population and 83.2 cm for the southern population. Analyses of series of monthly distributions of length revealed two cohorts born each year in the northern population, at least in the northern inshore part of its geographic range, but only one cohort born each year in the southern population. Growth curves fitted to the means of the monthly distributions of length gave estimates of length at 1 year of 126.2 and 132.6 cm and length at 2 years of 154.3 and 154.9 cm for the two cohorts in the northern population. and length at 1 year of 127.9 cm for the southern population. A growth curve fitted to lengths and ages (in dental growth layer groups) from the northern population gave estimates of lengths at 1 and 2 years of 123.0 and 143.0 cm, respectively.
Resumo:
Otoliths commonly are used to determine the taxon, age, and size of fishes. This information is useful for population management, predator-prey studies, and archaeological research. The relationship between the length of a fish and the length of its otoliths remains unknown for many species of marine fishes in the Pacific Ocean. Therefore, the relationships between fish length and fish weight, and between otolith length and fish length, were developed for 63 species of fishes caught in the eastern North Pacific Ocean. We also summarized similar relationships for 46 eastern North Pacific fish species reported in the literature. The relationship between fish length and otolith length was linear, and most of the variability was explained by a simple least-squares regression (r 2 > 0.700 for 45 of 63 species). The relationship between otolith length and fish length was not significantly different between left and right otoliths for all but one fish species. Images of otoliths from 77 taxa are included to assist in the identification of species. (PDF file contains 38 pages.)
Resumo:
This key includes 60 species of sea anemones and their relatives in the orders Actiniaria, Corallimorpharia, Ceriantharia, and Zoanthidea. Species from the intertidal zone, continental slope, and deep sea are included over a geographic range from Atlantic Canada to approximately South Carolina. In addition to the illustrated key itself, characteristics of each species are summarized in tabular form, including morphology, distribution, and types and sizes of cnidae. Ecological and taxonomic information on each species are also included in an annotated species list. (PDF file contains 76 pages.)
Resumo:
ENGLISH: Knowledge of spawning habits is useful in the elucidation of the life history, ecology and population structure of tropical tunas, and is essential to the sound management of these resources. Until recently, little was known concerning the spawning of tunas, or about the distribution of their larval and juvenile stages, in the Eastern Pacific Ocean. Nichols and Murphy (1944) reported the capture off Colombia of young scombroids ultimately identified as frigate mackerel, Auxis thazard (Schaefer and Marr, 1948a). Fowler (1944) reported the capture off Manzanillo, Mexico of two young tunas, one of which is definitely and the other most likely Neothunnus macropterus (Klawe, 1959). In 1947, young of N. macropterus, K. pelamis, A. thazard and E. lineatus were caught offshore from Central America (Schaefer and Marr, 1948a, 1948b, and Schaefer, 1948). Further collections of young N. macropterus, A. thazard and E. lineatus were made in the same general area in the spring of 1949 (Mead, 1951). In January and February 1955, Clemens (1956) carried Out experiments in rearing young tunas, E. lineatus and A. thazard, in shipboard aquaria, using fish caught off Central America. Matsumoto (1958) reported captures of larval N. macropterus and K. pelamis in the area along the 120th meridian of west longitude. Klawe (1958 and 1961b) reported captures of larval N. macropterus and Auxis from the Revillagigedo Islands. Captures of young Auxis and E. lineatus in the Gulf of Panama in January 1922 during the Dana Expedition have recently been reported by Matsumoto (1959). Capture of juveniles of K. pelamis, E. lineatus and Auxis in the area off tropical Mexico and in the area of outlying islands during the SCOT Expedition has been reported by Klawe (1960a). SPANISH: El conocimiento sobre los hábitos del desove es útil para el esclarecimiento de la historia natural, ecología y estructura de las poblaciones de atunes tropicales, y es esencial para la acertada administración de estos recursos. Hasta hace poco tiempo no se sabía mucho sobre el desove de los atunes o acerca de la distribución de sus larvas y juveniles en el Océano Pacífico Oriental. Nichols y Murphy (1944) informaron sobre la captura frente a Colombia de escómbridos jóvenes últimamente identificados como melva, Auxis thazard (Schaefer y Marr, 1948a). Fowler (1944) también informó sobre la captura de dos atunes jóvenes frente a Manzanillo, México, uno de los cuales era definitivamente Neothunnus macropterus y el otro era lo más probable que también lo fuera (Klawe, 1959). En 1947 se capturaron especímenes juveniles de N. macropterus, K. pelamis, A. thazard y E. lineatus frente a la América Central (Schaefer y Marr, 1948a, 1948b, y Schaefer, 1948). Otras recolecciones de ejemplares jóvenes de N. macropterus, A. thazard y E. lineatus fueron hechas en la misma área general durante la primavera de 1949 (Mead, 1951). En enero y febrero de 1955, Clemens (1956) efectuó experimentos de crianza de atunes jóvenes, E. lineatus y A.. thazard, en acuarios a bordo para lo que empleó peces capturados frente a la América Central. Matsumoto (1958) informó sobre capturas de larvas de N. macropterus y K. pelamis en el área a lo largo del meridiano 120 de longitud oeste. Klawe (1958 y 1961b) ha dado cuenta también de capturas de larvas de N. macropterus y Auxis en las Islas Revillagigedo. Matsumoto (1959) ha informado recientemente acerca de capturas de ejemplares jóvenes de Auxis y E. lineatus en el Golfo de Panamá en enero de 1922 durante la Expedición Dana. Klawe (1960a) informó así mismo que durante la Expedición SCOT se capturaron juveniles de K. pelamis, E. lineatus y Auxis en el área frente a la zona tropical de México y en la región de las islas alejadas del continente.
Resumo:
ENGLISH: Since 1951, the Inter-American Tropical Tuna Commission has been investigating the biology, ecology and population dynamics of the yellowfin tuna, Thunnus albacares, and the skipjack tuna, Katsuwonus pelamis, in the Eastern Pacific Ocean. Of particular importance has been the study of the effects of fishing and of fishery-independent factors on the abundance and distribution of these tunas. For yellowfin tuna there is, on the average, an inverse relationship between total fishing effort and apparent abundance (Schaefer, 1957a). For skipjack there is no evidence to suggest that fishing effort has ever been sufficiently intense to affect measurably the abundance (Schaefer, 1961). Rather, it appears that the year-to-year fluctuations in apparent abundance are independent of the activities of the fishing fleets. SPANISH: Desde 1951 la Comisión Interamericana del Atún Tropical se ha dedicado a la investigación de la biología, ecología y la dinámica de las poblaciones del atún aleta amarilla, Thunnus albacares, y del barrilete, Katsuwonus pelamis, en el Océano Pacífico del Este. De importancia especial ha sido el estudio de los efectos de la pesca y de los factores independientes de las pesquerías sobre la abundancia y la distribución de esos atunes. En cuanto al atún aleta amarilla, existe, en promedio, una relación inversa entre el esfuerzo total de pesca y la abundancia aparente (Schaefer, 1957a) . Con respecto al barrilete, no hay evidencia que haga pensar que el esfuerzo de pesca haya sido nunca lo suficientemente intenso como para afectar sensiblemente la abundancia (Schaefer, 1961). Más bien parece que las fluctuaciones de un año a otro en su abundancia aparente, son independientes de las actividades de las flotas pesqueras.
Resumo:
The phylum Acanthocephala (intestinal worm parasites of vertebrates) of the Atlantic coast of the United States comprises 43 species and 20 genera belonging to three orders: Echinorhynchida, Neoechinorhynchida, and Polymorphida. Adults are exclusively intestinal parasites of vertebrates. This study includes those species found in vertebrates of marine and estuarine environments along the North American Atlantic coast between Maine and Texas. Species that can be found within that geographical range and those that typically infect freshwater fishes but that are occasionally present in marine or estuarine hosts are also included. The taxonamy, anatomy, natural history, and ecology of the phylum Acanthocephala are discussed, and an illustrated key to the genera is presented. Techniques, an annotated systematic treatment of all 43 species, and a systematic index are included. No systematic decisions will be made at this time, but areas where such decisions are pending will be indicated and discussed for future reports. (PDF file contains 32 pages.)
Resumo:
(PDF file contains 112 pages.)
Resumo:
The eastern Bering Sea is a major marine ecosystem containing some of the largest populations of groundfish, crabs, birds, and marine mammals in the world. Commercial catches of groundfish in this region have averaged about 1.6 million tons (t) annually in 1970-86. This report describes the species and relative importance of species in the eastern Bering Sea groundfish complex, the environment in which they live, and the history of the fisheries and management during the years 1954 - 1985. Historical changes in abundance and the condition of the principal species at the end of this first 30 years of exploitation are also examined. Results suggest that the biomass of the groundfish complex is characterized by variability rather than stability. The most reliable data (1979 to 1985) suggests that the biomass of the complex fluctuated between 11.8 and 15.7 million t. Even greater variability is suggested by the less reliable data from earlier years. Because of its dominance in the complex and wide fluctuations in abundance, walleye pollock (Theragra chalcogramma) is primarily responsible for the major variations in abundance of the complex. After 30 years of exploitation, the complex was generally in excellent condition. (PDF file contains 100 pages.)
Resumo:
Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.)
Resumo:
This manual treats the six species of dicyemid mesozoans that have been reported in three species of hosts (Octopus vulgaris, O. joubini, and O. briareus) from the eastern coast of North America and the Gulf of Mexico, including the Florida Keys. All are parasites of species of Octopus and are in the genus Dicyema, family Dicyemidae. In the introduction, the life cycle, as known, and the general morphology of dicyemids are briefly described, and methods are given for collecting and preparing material for study. These are followed by a key to species and by an annotated checklist, which includes data, some hitherto unpublished, on their known prevalence in hosts from various localities including Bimini and Bermuda.(PDF file contains 20 pages.)