21 resultados para Allen, George
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
An obituary of the limnologist G.E. Hutchinson is given.
Resumo:
In 1937 the Development Commission provided an annual grant to the Freshwater Biological Association to pay for a director and secretary. The author moved to the Lake District in the same year, and at that time T.T. Macan was working on invertebrates; K.R. Allen on fish; C.H. Mortimer on chemistry and physics of the aquatic environment, and Marie Rosenberg on phytoplankton. They were backed by George Thompson as laboratory assistant and Rosa Bullen as secretary. The work of the Association continued and expanded throughout the Second World War with some far-reached discoveries made. For example, the recovery of lake sediment cores and the examination of diatom remains, so starting the discipline of archaeo-limnology. Also, a hydrological survey of the Windermere catchment area found significant traces of sulphuric acid in rain gauges. This was more than 30 years before "acid rain" became fashionable.
Resumo:
The sandbar shark (Carcharhinus plumbeus) was the cornerstone species of western North Atlantic and Gulf of Mexico large coastal shark fisheries until 2008 when they were allocated to a research-only fishery. Despite decades of fishing on this species, important life history parameters, such as age and growth, have not been well known. Some validated age and growth information exists for sandbar shark, but more comprehensive life history information is needed. The complementary application of bomb radiocarbon and tag-recapture dating was used in this study to determine valid age-estimation criteria and longevity estimates for this species. These two methods indicated that current age interpretations based on counts of growth bands in vertebrae are accurate to 10 or 12 years. Beyond these years, we could not determine with certainty when such an underestimation of age begins; however, bomb radiocarbon and tag-recapture data indicated that large adult sharks were considerably older than the estimates derived from counts of growth bands. Three adult sandbar sharks were 20 to 26 years old based on bomb radiocarbon results and were a 5- to 11-year increase over the previous age estimates for these sharks. In support of these findings, the tag-recapture data provided results that were consistent with bomb radiocarbon dating and further supported a longevity that exceeds 30 years for this species.
Resumo:
Bycatch in U.S. fisheries has become an increasingly important issue to both fisheries managers and the public, owing to the wide range of marine resources that can be involved. From 2002 to 2006, the Commercial Shark Fishery Observer Program (CSFOP) and the Shark Bottom Longline Observer Program (SBLOP) collected data on catch and bycatch caught on randomly selected vessels of the U.S. Atlantic shark bottom longline fishery. Three subregions (eastern Gulf of Mexico, South Atlantic, Mid-Atlantic Bight), five years (2002–06), four hook types (small, medium, large, and other), seven depth ranges (<50 m to >300 m), and eight broad taxonomic categories (e.g. Selachimorpha, Batoidea, Serranidae, etc.) were used in the analyses. Results indicated that the majority of bycatch (number) was caught in the eastern Gulf of Mexico and that the Selachimorpha taxon category made up over 90% of the total bycatch. The factors year followed by depth were the most common significant factors affecting bycatch.
Resumo:
Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understand the changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve the flow of ecosystem information to fishery managers. In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC and Inner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem. SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrower focus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front program focused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom production at the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effects on the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.
Resumo:
Samples of 11,000 King George whiting (Sillaginodes punctata) from the South Australian commercial and recreational catch, supplemented by research samples, were aged from otoliths. Samples were analyzed from three coastal regions and by sex. Most sampling was undertaken at fish processing plants, from which only fish longer than the legal minimum length were obtained. A left-truncated normal distribution of lengths at monthly age was therefore employed as model likelihood. Mean length-at-monthly-age was described by a generalized von Bertalanffy formula with sinusoidal seasonality. Likelihood standard deviation was modeled to vary allometrically with mean length. A range of related formulas (with 6 to 8 parameters) for seasonal mean length at age were compared. In addition to likelihood ratio tests of relative fit, model selection criteria were a minimum occurrence of high uncertainties (>20% SE), of high correlations (>0.9, >0.95, and >0.99) and of parameter estimates at their biological limits, and we sought a model with a minimum number of parameters. A generalized von Bertalanffy formula with t0 fixed at 0 was chosen. The truncated likelihood alleviated the overestimation bias of mean length at age that would otherwise accrue from catch samples being restricted to legal sizes.
Resumo:
Sex ratio data of two species of penaeid prawns Metapenaues kutchensis George, George and Rao, 1963 and Parapenaeopsis sculptilis (Heller, 1862), occurring in the Gulf of Kachchh, were statistically analysed. A preponderance of females was observed in both the species and the ratio of male to female for both years combined for M. kutchensis and P. sculptilis was found to be 1:15 and 1:2.7, respectively. Chi-square analysis revealed significant difference in the sex ratio of the two species.
Resumo:
This study aimed at evaluating the production levels in terms of catch estimates of the artisanal fisheries of the Edward-George system in addition to providing information on the facilities and services at landing sites and the composition, magnitude and distribution of fishing effort to guide development and management of the fisheries resources of the Edward and George lakes and Kazinga channel. Specifically, the study was expected to come up with the following outputs:- a) Information on the number of fish landing sites on the basin lakes; b) Information on the facilities available at the fish landing sites to service the fisheries sector ; c) Information on the number of fishers; d) Information on the number and types of fishing crafts; e) Information on the modes of propulsion of the fishing crafts; f) Information on the number types and sizes of fishing gears including the number of illegal fishing gears in the fishery; and g) Recommendations on development and management of the fisheries of the Edward and George lakes and Kazinga channel. h) Beach values in terms of annual catches and annual revenue from the water bodies.
Resumo:
FIRRI surveyed the fisheries of Lake George and Kazinga Channel between 20th June and 20th July 2001. This was the second survey FIRRI has conducted for the ILM project on the water system. The first survey was conducted during November 2000. These data, the analyses and accompanying reports contribute to baseline information for the fishery being collected with the support of ILM that is required for lakewide planning and management. Eight fish landing sites (6 on Lake George) namely; Kahendero, Hamukungu, Kasenyi, Kashaka, Mahyoro, Kayinja (2 on Kazinga Channel) namely; Katunguru -K and B fall within the focus of ILM and were surveyed during November 2000 and June/July 2001 over a three day period at each landing site in 2001 (Mahyoro 2 days). In November 2000, each landing was sampled once. FIRRI conducted a rapid FS and concurrently a CAS. All results are reported by landing site and then summed up (Global) for 8 sites on Lake George and Kazinga Channel.
Resumo:
Until the late 1990s the fisheries of Ugandan lakes had been managed by government where stakeholders were excluded from the decision-making process. In order to involve other stakeholders, co-management was adopted. Operationalising Co-management on landing sites has led to the formation of BMUs at gazetted landing sites. A BMU is made up of a BMU assembly and the BMU committee that it elects. A BMU committee should be: 30% boat owners; 30% boat barias 30% including fish processors, boat makers, local gear makers and repairers, fishing input dealers and managers and 10% fish mongers/traders; and if possible, 30% women. To operate at a particular landing site, one must be registered with the BMU. The BMU assembly is the supreme organ of a BMU empowered to elect, approve and remove the BMU committee