62 resultados para 2016 Crop Condition
Resumo:
A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)
Resumo:
Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)
Resumo:
(PDF file contains 248 pages.)
Resumo:
Over 100 molluscan species are landed in Mexico. About 30% are harvested on the Pacific coast and 70% on the Atlantic coast. Clams, scallops, and squid predominate on the Pacific coast (abalone, limpets, and mussels are landed there exclusively). Conchs and oysters predominate on the Atlantic coast. In 1988, some 95,000 metric tons (t) of mollusks were landed, with a value of $33 million. Mollusks were used extensively in prehispanic Mexico as food, tools, and jewelry. Their use as food and jewelry continues. Except in the States of Baja California and Baja California Sur, where abalone, clams, and scallops provide fishermen with year-round employment, mollusk fishing is done part time. On both the Pacific and Atlantic coasts, many fishermen are nomads, harvesting mollusks wherever they find abundant stocks. Upon finding such beds, they build camps, begin harvesting, and continue until the mollusks become so scarce that it no longer pays to continue. They then look for productive beds in other areas and rebuild their camps. Fishermen harvest abalones, mussels, scallops, and clams by free-diving and using scuba and hooka. Landings of clams and cockles have been growing, and 22,000 t were landed in 1988. Fishermen harvest intertidal clams by hand at wading depths, finding them with their feet. In waters up to 5 m, they harvest them by free-diving. In deeper water, they use scuba and hooka. Many species of gastropods have commercial importance on both coasts. All species with a large detachable muscle are sold as scallops. On the Pacific coast, hatchery culture of oysters prevails. Oyster culture in Atlantic coast lagoons began in the 1950's, when beds were enhanced by spreading shells as cultch for spat. (PDF file contains 228 pages.)
Resumo:
This three-volume monograph represents the first major attempt in over a century to provide, on regional bases, broad surveys of the history, present condition, and future of the important shellfisheries of North and Central America and Europe. It was about 100 years ago that Ernest Ingersoll wrote extensively about several molluscan fisheries of North America (1881, 1887) and about 100 years ago that Bashford Dean wrote comprehensively about methods of oyster culture in Europe (1893). Since those were published, several reports, books, and pamphlets have been written about the biology and management of individual species or groups ofclosely related mollusk species (Galtsoff, 1964; Korringa, 1976 a, b, c; Lutz, 1980; Manzi and Castagna, 1989; Shumway, 1991). However, nothing has been written during the past century that is comparable to the approach used by Ingersoll in describing the molluscan fisheries as they existed in his day in North America or, for that matter, in Europe. (PDF file contains 224 pages.)
Resumo:
ENGLISH: The Inter-American Tropical Tuna Commission has maintained a hydro-biological station in the Gulf of Panama located at 8°45'N, 79°23'W in connection with their ecological investigation of the anchoveta (Cetengraulis mysticetus), a tuna baitfish (see Peterson, 1961, for references) . The depth is approximately 42 meters at mean low water at this station. Routine hydrographic and biological observations have been made (Schaefer, Bishop and Howard, 1958; Schaefer and Bishop, 1958; Forsbergh, 1963), including the collection of quantitative phytoplankton samples from November 1954 through May 1957 (Smayda, 1959; unpublished). The seasonal and regional variations in phytoplankton growth in the Gulf of Panama have also been investigated (Smayda, 1963). The relationships existing between C1 4 assimilation as determined by 24 hour in situ experiments and diatom standing crop at 10 meters when expressed as cell numbers, cell volume, cell surface area and cell plasma volume have been assessed for 30 observations made between November 1954 and May 1957 at 8°45'N, 79°23'W. The average cell volume and cell surface area characteristics for 110 diatom species and varieties are presented. SPANISH: Las relaciones existentes entre la asimilación del C14 , determinadas después de 24 horas de experimentos in situ, y la cosecha estable de las diatomeas a 10 metros, expresando el número de células, volumen celular, área de la superficie celular y volumen del plasma celular, han sido determinadas por medio de 30 observaciones hechas entre noviembre de 1954 y mayo de 1957, a los 8°45'N, 79°23'W. Se presenta, para 110 especies y variedades de diatomeas, el promedio de las características del volumen celular y del área de la superficie celular. (PDF contains 67 pages.)
Resumo:
Sex ratio and fecundity variations of Chrysichthys nigrodigitatus and Chrysichthys walkeri from Asejire Lake (Nigeria) were examined. The Logarithm transformation of weight (W) against standard length (SL) gave a straight-line graph represented by the following equations: 1) C. nigrodigitatus LogW =-0.66 + 2.13 Log SL; = 0.854; (P < 0.001) n = 209; 2) C. walkeri LogW = -1.23 + 2.63 Log SL; = 0.759; (P < 0.001) n = 237. Males were generally more than females in both species. The ratio of males:females was higher in C. nigrodigitatus (1:0.18) than in C. walkeri (1:0.8). C. walkeri attained sexual maturity at a smaller size of 20.0 g (12.0 cm Standard Length) compared with C. nigrodigitatus maturity size of 45.0 g (14.0 cm Standard Length). Relative fecundity was not dependent on body weight and standard length for C. walkeri but it was significant at P < 0.05 and P < 0.01 respectively for C. nigrodigitatus
Resumo:
Sierra Leone is a tropical country where water temperatures are high throughout the year. Consequently the local oysters tend to spawn the year round, with one or two spawning peaks. The condition of such tropical oysters may not be as high as those oyesters in temperate countries since the stored glycogen is regularly utilized to form gonads. A high condition factor value indicates that the oysters have accumulated glycogen and or gonads, whereas a low condition factor value indicates that the oysters have spawned and are in the process of accumulating glycogen, which may later be utilized for gonad development. In oyster culture, condition factor studies may be supported by plankton and oyster spat settlement studies in the culture area. These studies give an indication of when oyster larvae and spat settlement are at their peak values. In Sierra Leone studies of the plankton and spat settlement are undertaken every week throughout the year. Conditions factor is obtained from the ratio weight of dry (oyster) meat x 1000/internal volume. Detailed condition factor values are shown in relation to salinity at two stations. Condition factor declines with reducing salinity, which principally occurs during the rainy season. The best times to collect spat are May to June and September to October
Diet and condition of American Alligators (Alligator mississippiensis)in three central Florida lakes
Resumo:
Understanding the diet of crocodilians is important because diet affects condition, behavior, growth, and reproduction. By examining the diet of crocodilians, valuable knowledge is gained about predator-prey interactions and prey utilization among habitats. In this study, I examined the diet and condition of adult American alligators (Alligator mississippiensis) in three central Florida lakes, Griffin, Apopka, and Woodruff. Two hundred adult alligators were captured and lavaged from March through October 2001, from April through October 2002, and from April through August 2003. Alligators ate a variety of vertebrate and invertebrate prey, but vertebrates were more abundant and fish dominated alligator diets in the lakes. Species composition of fish varied among the lakes. The majority of the diet of alligators from Lakes Apopka and Woodruff was fish, 90% and 84% respectively. Lake Apopka alligators consumed a significantly (P = 0.006) higher proportion of fish in their diet. Fish were 54% of the diet of Lake Griffin alligators and the infrequent occurrence of reptiles, mammals, birds, and amphibians often resulted in a large biomass. Differences in alligator diets among lakes may be due to differences in sample size (higher numbers of samples from Lake Griffin), prey availability, habitat, prey vulnerability, or prey size. Alligator condition (Fulton’s Condition Factor, K) was significantly (P < 0.001) different among the lakes. Alligators from Lake Apopka had the highest condition, followed by those from Lake Griffin, and alligators from Lake Woodruff had the lowest condition. Composition of fish along with diversity and equitability of fish in alligator diets may have contributed to differences in condition among lakes. Condition was probably also due to factors other than diet such as alligator hunting behavior, alligator density, or year-round optimal temperature that prolongs feeding. The observed diet and condition differences probably reflect both habitat differences and prey availability in these three lakes.
Resumo:
We evaluated measures of bioelectrical impedance analysis (BIA) and Fulton’s condition factor (K) as potential nonlethal indices for detecting short-term changes in nutritional condition of postsmolt Atlantic salmon (Salmo salar). Fish reared in the laboratory for 27 days were fed, fasted, or fasted and then refed. Growth rates and proximate body composition (protein, fat, water) were measured in each fish to evaluate nutritional status and condition. Growth rates of fish responded rapidly to the absence or reintroduction of food, whereas body composition (% wet weight) remained relatively stable owing to isometric growth in fed fish and little loss of body constituents in fasted fish, resulting in nonsignificant differences in body composition among feeding treatments. The utility of BIA and Fulton’s K as condition indices requires differences in body composition. In our study, BIA measures were not significantly different among the three feeding treatments, and only on the final day of sampling was K of fasted vs. fed fish significantly different. BIA measures were correlated with body composition content; however, wet weight was a better predictor of body composition on both a content and concentration (% wet weight) basis. Because fish were growing isometrically, neither BIA nor K was well correlated with growth rate. For immature fish, where growth rate, rather than energy reserves, is a more important indicator of fish condition, a nonlethal index that reflects shortterm changes in growth rate or the potential for growth would be more suitable as a condition index than either BIA measures or Fulton�
Resumo:
In this study, phase angle (the ratio of resistance and reactance of tissue to applied electrical current) is presented as a possible new method to measure fish condition. Condition indices for fish have historically been based on simple weight-at-length relationships, or on costly and timeconsuming laboratory procedures that measure specific physiological parameters. Phase angle is introduced to combine the simplicity of a quick field-based measurement with the specificity of laboratory analysis by directly measuring extra- and intracellular water distribution within an organism, which is indicative of its condition. Phase angle, which can be measured in the field or laboratory in the time it takes to measure length and weight, was measured in six species of fish at different states (e.g., fed vs. fasted, and postmortem) and under different environmental treatments (wild vs. hatchery, winter vs. spring). Phase angle reflected different states of condition. Phase angles <15° indicated fish in poor condition, and phase angles >15° indicated fish that were in better condition. Phase angle was slightly affected by temperatures (slope = – 0.19) in the 0–8°C range and did not change in fish placed on ice for <12 hours. Phase angle also decreased over time in postmortem fish because of cell membrane degradation and subsequent water movement from intra- to extracellular (interstitial) spaces. Phase angle also reflected condition of specific anatomical locations within the fish.
Resumo:
T he relative value of pelagic habitat for three size classes of juvenile Pacific ocean perch (Sebastes alutus) was investigated by comparing their abundance and condition in two areas of the Aleutian Islands. Diet, zooplankton biomass, and water column temperatures were examined as potential factors affecting observed differences. Juvenile Pacific ocean perch abundance and condition, and zooplankton biomass varied significantly between areas, whereas juvenile Pacific ocean perch diet varied only by size class. Observed differences in fish condition may have been due to the quantity or quality of pelagic prey items consumed. For the delineation of essential demersal fish habitat, important ecological features of the pelagic habitat must therefore be considered.
Resumo:
The northern bluefin tuna (Thunnus thynnus) is a highly mobile apex predator in the Gulf of Maine. Despite current stock assessments that indicate historically high abundance of its main prey, Atlantic herring (Clupea harengus), commercial fishermen have observed declines in the somatic condition of northern bluefin tuna during the last decade. We examined this claim by reviewing detailed logbooks of northern bluefin tuna condition from a local fishermen’s cooperative and applying multinomial regression, a robust tool for exploring how a categorical variable may be related to other variables of interest. The data set contained >3082 observations of condition (fat and oil content and fish shape) from fish landed between 1991 and 2004. Energy from stored lipids is used for migration and reproduction; therefore a reduction in energy acquisition on bluefin tuna feeding grounds could diminish allocations to growth and gamete production and have detrimental consequences for rebuilding the western Atlantic population. A decline in northern bluefin tuna somatic condition could indicate substantial changes in the bottom-up transfer of energy in the Gulf of Maine, shifts in their reproductive or migratory patterns, impacts of fishing pressure, or synergistic effects from multiple causes.
Resumo:
Length-weight relationship parameters of Heterobranchus longifilis males, females and combined sexes are given. The samples were collected from Idodo River, with size ranging from 123 mm total length, L, to 936 mm L. The values obtained for the mean L by sex show that males were significantly (p<0.05) larger than females. The results show that the slope (b) is significantly (p<0.05) below 3.0 for the male, female and pooled sample. The species exhibit a negative allometric growth pattern. The relative condition of fish shows seasonal variation, with females generally being in better condition than the males.