2 resultados para Point Data
em JISC Information Environment Repository
Resumo:
This study was undertaken by UKOLN on behalf of the Joint Information Systems Committee (JISC) in the period April to September 2008. Application profiles are metadata schemata which consist of data elements drawn from one or more namespaces, optimized for a particular local application. They offer a way for particular communities to base the interoperability specifications they create and use for their digital material on established open standards. This offers the potential for digital materials to be accessed, used and curated effectively both within and beyond the communities in which they were created. The JISC recognized the need to undertake a scoping study to investigate metadata application profile requirements for scientific data in relation to digital repositories, and specifically concerning descriptive metadata to support resource discovery and other functions such as preservation. This followed on from the development of the Scholarly Works Application Profile (SWAP) undertaken within the JISC Digital Repositories Programme and led by Andy Powell (Eduserv Foundation) and Julie Allinson (RRT UKOLN) on behalf of the JISC. Aims and Objectives 1.To assess whether a single metadata AP for research data, or a small number thereof, would improve resource discovery or discovery-to-delivery in any useful or significant way. 2.If so, then to:a.assess whether the development of such AP(s) is practical and if so, how much effort it would take; b.scope a community uptake strategy that is likely to be successful, identifying the main barriers and key stakeholders. 3.Otherwise, to investigate how best to improve cross-discipline, cross-community discovery-to-delivery for research data, and make recommendations to the JISC and others as appropriate. Approach The Study used a broad conception of what constitutes scientific data, namely data gathered, collated, structured and analysed using a recognizably scientific method, with a bias towards quantitative methods. The approach taken was to map out the landscape of existing data centres, repositories and associated projects, and conduct a survey of the discovery-to-delivery metadata they use or have defined, alongside any insights they have gained from working with this metadata. This was followed up by a series of unstructured interviews, discussing use cases for a Scientific Data Application Profile, and how widely a single profile might be applied. On the latter point, matters of granularity, the experimental/measurement contrast, the quantitative/qualitative contrast, the raw/derived data contrast, and the homogeneous/heterogeneous data collection contrast were discussed. The Study report was loosely structured according to the Singapore Framework for Dublin Core Application Profiles, and in turn considered: the possible use cases for a Scientific Data Application Profile; existing domain models that could either be used or adapted for use within such a profile; and a comparison existing metadata profiles and standards to identify candidate elements for inclusion in the description set profile for scientific data. The report also considered how the application profile might be implemented, its relationship to other application profiles, the alternatives to constructing a Scientific Data Application Profile, the development effort required, and what could be done to encourage uptake in the community. The conclusions of the Study were validated through a reference group of stakeholders.
Resumo:
The possibilities of digital research have altered the production, publication and use of research results. Academic research practice and culture are changing or have already been transformed, but to a large degree the system of academic recognition has not yet adapted to the practices and possibilities of digital research. This applies especially to research data, which are increasingly produced, managed, published and archived, but play hardly a role yet in practices of research assessment. The aim of the workshop was to bring experts and stakeholders from research institutions, universities, scholarly societies and funding agencies together in order to review, discuss and build on possibilities to implement the culture of sharing and to integrate publication of data into research assessment procedures. The report 'The Value of Research Data - Metrics for datasets from a cultural and technical point of view' was presented and discussed. Some of the key finding were that data sharing should be considered normal research practice, in fact not sharing should be considered malpractice. Research funders and universities should support and encourage data sharing. There are a number of important aspects to consider when making data count in research and evaluation procedures. Metrics are a necessary tool in monitoring the sharing of data sets. However, data metrics are at present not very well developed and there is not yet enough experience in what these metrics actually mean. It is important to implement the culture of sharing through codes of conducts in the scientific communities. For further key findings please read the report.