4 resultados para automatically generated meta classifiers with large levels

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic rupture simulations are unique in their contributions to the study of earthquake physics. The current rapid development of dynamic rupture simulations poses several new questions: Do the simulations reflect the real world? Do the simulations have predictive power? Which one should we believe when the simulations disagree? This thesis illustrates how integration with observations can help address these questions and reduce the effects of non-uniqueness of both dynamic rupture simulations and kinematic inversion problems. Dynamic rupture simulations with observational constraints can effectively identify non-physical features inferred from observations. Moreover, the integrative technique can also provide more physical insights into the mechanisms of earthquakes. This thesis demonstrates two examples of such kinds of integration: dynamic rupture simulations of the Mw 9.0 2011 Tohoku-Oki earthquake and of earthquake ruptures in damaged fault zones:

(1) We develop simulations of the Tohoku-Oki earthquake based on a variety of observations and minimum assumptions of model parameters. The simulations provide realistic estimations of stress drop and fracture energy of the region and explain the physical mechanisms of high-frequency radiation in the deep region. We also find that the overridding subduction wedge contributes significantly to the up-dip rupture propagation and large final slip in the shallow region. Such findings are also applicable to other megathrust earthquakes.

(2) Damaged fault zones are usually found around natural faults, but their effects on earthquake ruptures have been largely unknown. We simulate earthquake ruptures in damaged fault zones with material properties constrained by seismic and geological observations. We show that reflected waves in fault zones are effective at generating pulse-like ruptures and head waves tend to accelerate and decelerate rupture speeds. These mechanisms are robust in natural fault zones with large attenuation and off-fault plasticity. Moreover, earthquakes in damaged fault zones can propagate at super-Rayleigh speeds that are unstable in homogeneous media. Supershear transitions in fault zones do not require large fault stresses. In the end, we present observations in the Big Bear region, where variability of rupture speeds of small earthquakes correlates with the laterally variable materials in a damaged fault zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phase and amplitude, off-axis hologram has been synthesized from three computer-generated transmission masks, using a multiple-exposure holographic recording method. Each of the masks controls one fixed-phase component of the complex hologram transmittance. The basic grating is generated optically, relieving the computer of the burden of drawing details the size of each fringe. The maximum information capacity of the computer plotting device can then be applied to the generation of the grating modulation function. By this method large digital holograms (25 mm by 25 mm) have been synthesized in dichromated gelatin. The recording method is applicable to virtually any holographic medium.

The modulated grating hologram was designed primarily for the application of spatial filtering, in which the requirement is a hologram with large dynamic range and large free spectral range. Choice of a low-noise, high-efficiency medium such as dichromated gelatin will allow exceptionally large dynamic range. Independence of the optically-generated carrier grating from the computer-generated modulation functions allows arbitrarily large free spectral range.

The performance of a holographic spatial filter will be limited ultimately by noise originating from imperfections in the holographic medium. The characteristics of this noise are analyzed, and in the case of a high diffraction efficiency hologram are shown to differ significantly from previous analyses. The dominant noise source in holograms of high diffraction efficiency will be scattering of the first order or imaging wave by deformations in the hologram surface or other effects of low spatial frequency. Experimental measurements in various low-noise holographic media verify these predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quasicontinuum (QC) method was introduced to coarse-grain crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. Though many QC formulations have been proposed with varying characteristics and capabilities, a crucial cornerstone of all QC techniques is the concept of summation rules, which attempt to efficiently approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of atoms. In this work we propose a novel, fully-nonlocal, energy-based formulation of the QC method with support for legacy and new summation rules through a general energy-sampling scheme. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. Within this structure, we introduce a new class of summation rules which leverage the affine kinematics of this QC formulation to most accurately integrate thermodynamic quantities of interest. By comparing this new class of summation rules to commonly-employed rules through analysis of energy and spurious force errors, we find that the new rules produce no residual or spurious force artifacts in the large-element limit under arbitrary affine deformation, while allowing us to seamlessly bridge to full atomistics. We verify that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors than all comparable previous summation rules through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions. Due to the unique structure of these summation rules, we also use the new formulation to study scenarios with large regions of free surface, a class of problems previously out of reach of the QC method. Lastly, we present the key components of a high-performance, distributed-memory realization of the new method, including a novel algorithm for supporting unparalleled levels of deformation. Overall, this new formulation and implementation allows us to efficiently perform simulations containing an unprecedented number of degrees of freedom with low approximation error.