4 resultados para New North

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis consists of two separate parts. Part I (Chapter 1) is concerned with seismotectonics of the Middle America subduction zone. In this chapter, stress distribution and Benioff zone geometry are investigated along almost 2000 km of this subduction zone, from the Rivera Fracture Zone in the north to Guatemala in the south. Particular emphasis is placed on the effects on stress distribution of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone, which subduct at seismic gaps. Stress distribution is determined by studying seismicity distribution, and by analysis of 190 focal mechanisms, both new and previously published, which are collected here. In addition, two recent large earthquakes that have occurred near the Tehuantepec Ridge and the Orozco Fracture Zone are discussed in more detail. A consistent stress release pattern is found along most of the Middle America subduction zone: thrust events at shallow depths, followed down-dip by an area of low seismic activity, followed by a zone of normal events at over 175 km from the trench and 60 km depth. The zone of low activity is interpreted as showing decoupling of the plates, and the zone of normal activity as showing the breakup of the descending plate. The portion of subducted lithosphere containing the Orozco Fracture Zone does not differ significantly, in Benioff zone geometry or in stress distribution, from adjoining segments. The Playa Azul earthquake of October 25, 1981, Ms=7.3, occurred in this area. Body and surface wave analysis of this event shows a simple source with a shallow thrust mechanism and gives Mo=1.3x1027 dyne-cm. A stress drop of about 45 bars is calculated; this is slightly higher than that of other thrust events in this subduction zone. In the Tehuantepec Ridge area, only minor differences in stress distribution are seen relative to adjoining segments. For both ridges, the only major difference from adjoining areas is the infrequency or lack of occurrence of large interplate thrust events.

Part II involves upper mantle P wave structure studies, for the Canadian shield and eastern North America. In Chapter 2, the P wave structure of the Canadian shield is determined through forward waveform modeling of the phases Pnl, P, and PP. Effects of lateral heterogeneity are kept to a minimum by using earthquakes just outside the shield as sources, with propagation paths largely within the shield. Previous mantle structure studies have used recordings of P waves in the upper mantle triplication range of 15-30°; however, the lack of large earthquakes in the shield region makes compilation of a complete P wave dataset difficult. By using the phase PP, which undergoes triplications at 30-60°, much more information becomes available. The WKBJ technique is used to calculate synthetic seismograms for PP, and these records are modeled almost as well as the P. A new velocity model, designated S25, is proposed for the Canadian shield. This model contains a thick, high-Q, high-velocity lid to 165 km and a deep low-velocity zone. These features combine to produce seismograms that are markedly different from those generated by other shield structure models. The upper mantle discontinuities in S25 are placed at 405 and 660 km, with a simple linear gradient in velocity between them. Details of the shape of the discontinuities are not well constrained. Below 405 km, this model is not very different from many proposed P wave models for both shield and tectonic regions.

Chapter 3 looks in more detail at recordings of Pnl in eastern North America. First, seismograms from four eastern North American earthquakes are analyzed, and seismic moments for the events are calculated. These earthquakes are important in that they are among the largest to have occurred in eastern North America in the last thirty years, yet in some cases were not large enough to produce many good long-period teleseismic records. A simple layer-over-a-halfspace model is used for the initial modeling, and is found to provide an excellent fit for many features of the observed waveforms. The effects on Pnl of varying lid structure are then investigated. A thick lid with a positive gradient in velocity, such as that proposed for the Canadian shield in Chapter 2, will have a pronounced effect on the waveforms, beginning at distances of 800 or 900 km. Pnl records from the same eastern North American events are recalculated for several lid structure models, to survey what kinds of variations might be seen. For several records it is possible to see likely effects of lid structure in the data. However, the dataset is too sparse to make any general observations about variations in lid structure. This type of modeling is expected to be important in the future, as the analysis is extended to more recent eastern North American events, and as broadband instruments make more high-quality regional recordings available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly all young stars are variable, with the variability traditionally divided into two classes: periodic variables and aperiodic or "irregular" variables. Periodic variables have been studied extensively, typically using periodograms, while aperiodic variables have received much less attention due to a lack of standard statistical tools. However, aperiodic variability can serve as a powerful probe of young star accretion physics and inner circumstellar disk structure. For my dissertation, I analyzed data from a large-scale, long-term survey of the nearby North America Nebula complex, using Palomar Transient Factory photometric time series collected on a nightly or every few night cadence over several years. This survey is the most thorough exploration of variability in a sample of thousands of young stars over time baselines of days to years, revealing a rich array of lightcurve shapes, amplitudes, and timescales.

I have constrained the timescale distribution of all young variables, periodic and aperiodic, on timescales from less than a day to ~100 days. I have shown that the distribution of timescales for aperiodic variables peaks at a few days, with relatively few (~15%) sources dominated by variability on tens of days or longer. My constraints on aperiodic timescale distributions are based on two new tools, magnitude- vs. time-difference (Δm-Δt) plots and peak-finding plots, for describing aperiodic lightcurves; this thesis provides simulations of their performance and presents recommendations on how to apply them to aperiodic signals in other time series data sets. In addition, I have measured the error introduced into colors or SEDs from combining photometry of variable sources taken at different epochs. These are the first quantitative results to be presented on the distributions in amplitude and time scale for young aperiodic variables, particularly those varying on timescales of weeks to months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An air filled ionization chamber has been constructed with a volume of 552 liters and a wall consisting of 12.7 mg/cm2 of plastic wrapped over a rigid, lightweight aluminum frame. A calibration in absolute units, independent of previous Caltech ion chamber calibrations, was applied to a sealed Neher electrometer for use in this chamber. The new chamber was flown along with an older, argon filled, balloon type chamber in a C-135 aircraft from 1,000 to 40,000 feet altitude, and other measurements of sea level cosmic ray ionization were made, resulting in the value of 2.60 ± .03 ion pairs/cm3 sec atm) at sea level. The calibrations of the two instruments were found to agree within 1 percent, and the airplane data were consistent with previous balloon measurements in the upper atmosphere. Ionization due to radon gas in the atmosphere was investigated. Absolute ionization data in the lower atmosphere have been compared with results of other observers, and discrepancies have been discussed.

Data from a polar orbiting ion chamber on the OGO-II, IV spacecraft have been analyzed. The problem of radioactivity produced on the spacecraft during passes through high fluxes of trapped protons has been investigated, and some corrections determined. Quiet time ionization averages over the polar regions have been plotted as function of altitude, and an analytical fit is made to the data that gives a value of 10.4 ± 2.3 percent for the fractional part of the ionization at the top of the atmosphere due to splash albedo particles, although this result is shown to depend on an assumed angular distribution for the albedo particles. Comparisons with other albedo measurements are made. The data are shown to be consistent with balloon and interplanetary ionization measurements. The position of the cosmic ray knee is found to exhibit an altitude dependence, a North-South effect, and a small local time variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive Rubidium-Strontium age determinations on both mineral and total rock samples of the crystalline rocks of New Zealand, which almost solely crop out in the South Island, indicate widespread plutonic and metamorphic activity occurred during two periods, one about 100-118 million years ago and the other about 340-370 million years ago. The former results date the Rangitata Orogeny as Cretaceous. They associate extensive plutonic activity with this orogeny which uplifted and metamorphosed the rocks of the New Zealand Geosyncline, although no field association between the metamorphosed geosynclinal rocks and plutonic rocks has been found. The Cretaceous plutonic rocks occur to the west in the Foreland Province in Fiordland, Nelson, and Westland, geographically separated from the Geosynclinal Province. Because of this synchronous timing of plutonic and high pressure metamorphic activity in spatially separated belts, the Rangitata Orogeny in New Zealand is very similar to late Mesozoic orogenic activity in many other areas of the circum-Pacific margin (Miyashiro, 1961).

The 340-370 million year rocks, both plutonic and metamorphic, have been found only in that part of the Foreland Province north of the Alpine Fault. There, they are concentrated along the west coast over a distance of 500 km, and appear scattered inland from the coast. Probably this activity marks the outstanding Phanerozoic stratigraphic gap in New Zealand which occurred after the Lower Devonian.

A few crystalline rocks in the Foreland Province north of the Alpine Fault with measured ages intermediate between 340 and 120 million years have been found. Of these, those with more than one mineral examined give discordant results. All of these rocks are tentatively regarded as 340-370 million year old rocks that have been variously disturbed during the Rangitata Orogeny, 100-120 million years ago.

In addition to these two periods, plutonic activity, dominantly basic and ultrabasic, but including the development of some rocks of intermediate and acidic composition, occurred along the margin of the Geosynclinal Province at its border with the Foreland Province during Permian times about 245 million years ago, and this activity possibly extended into the Mesozoic.

Evidence from rubidium-strontium analyses of minerals and a total rock, and from uranium, thorium, and lead analyses of uniform euhedral zircons from a meta-igneous portion of the Charleston Gneiss, previously mapped as Precambrian, indicate that this rock is a 350-370 million year old plutonic rock metamorphosed 100 million yea rs ago during the Rangitata Orogeny. No crystalline rocks with primary Precambrian ages have been found in New Zealand. However, Pb207/Pb206 ages of 1360 million years and 1370 million years have been determined for rounded detrital zircons separated from each of two hornfels samples of one of New Zealand's olde st sedimentary units, the Greenland Series. These two samples were metamorphosed 345- 370 million years ago. They occur along the west coast, north of the Alpine Fault, at Waitaha River and Moeraki River, separated by 135 km. The Precambrian measured ages are most likely minimum ages for the oldest source area which provided the detrital zircons because the uranium, thorium and lead data are highly discordant. These results are of fundamental importance for the tectonic picture of the Southwest Pacific margin and demonstrate the existence of relatively old continental crust of some lateral extent in the neighborhood of New Zealand.