6 resultados para Microbial metabolism

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbes have profoundly influenced the Earth’s environments through time. Records of these interactions come primarily from the development and implementation of proxies that relate known modern processes to chemical signatures in the sedimentary record. This thesis is presented in two parts, focusing first on novel proxy development in the modern and second on interpretation of past environments using well-established methods. Part 1, presented in two chapters, builds on previous observations that different microbial metabolisms produce vastly different lipid hydrogen isotopic compositions. Chapter 1 evaluates the potential environmental expression of metabolism-based fractionation differences by exploiting the natural microbial community gradients in hydrothermal springs. We find a very large range in isotopic composition that can be demonstrably linked to the microbial source(s) of the fatty acids at each sample site. In Chapter 2, anaerobic culturing techniques are used to evaluate the hydrogen isotopic fractionations produced by anaerobic microbial metabolisms. Although the observed fractionation patterns are similar to those reported for aerobic cultures for some organisms, others show large differences. Part 2 changes focus from the modern to the ancient and uses classical stratigraphic methods combined with isotope stratigraphy to interpret microbial and environmental changes during the latest Precambrian Era. Chapter 3 presents a detailed characterization of the facies, parasequence development, and stratigraphic architecture of the Ediacaran Khufai Formation. Chapter 4 presents measurements of carbon, oxygen, and sulfur isotopic ratios in stratigraphic context. Large oscillations in the isotopic composition of sulfate constrain the size of the marine sulfate reservoir and suggest incorporation of an enriched isotopic source. Because this data was measured in stratigraphic context, we can assert with confidence that these isotopic shifts are not related to stratigraphic surfaces or facies type but instead reflect the evolution of the ocean through time. This data integrates into the chemostratigraphic global record and contributes to the emerging picture of changing marine chemistry during the latest Precambrian Era.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the roles of microorganisms in environmental settings by linking phylogenetic identity to metabolic function is a key challenge in delineating their broad-scale impact and functional diversity throughout the biosphere. This work addresses and extends such questions in the context of marine methane seeps, which represent globally relevant conduits for an important greenhouse gas. Through the application and development of a range of culture-independent tools, novel habitats for methanotrophic microbial communities were identified, established settings were characterized in new ways, and potential past conditions amenable to methane-based metabolism were proposed. Biomass abundance and metabolic activity measures – both catabolic and anabolic – demonstrated that authigenic carbonates associated with seep environments retain methanotrophic activity, not only within high-flow seep settings but also in adjacent locations exhibiting no visual evidence of chemosynthetic communities. Across this newly extended habitat, microbial diversity surveys revealed archaeal assemblages that were shaped primarily by seepage activity level and bacterial assemblages influenced more substantially by physical substrate type. In order to reliably measure methane consumption rates in these and other methanotrophic settings, a novel method was developed that traces deuterium atoms from the methane substrate into aqueous medium and uses empirically established scaling factors linked to radiotracer rate techniques to arrive at absolute methane consumption values. Stable isotope probing metaproteomic investigations exposed an array of functional diversity both within and beyond methane oxidation- and sulfate reduction-linked metabolisms, identifying components of each proposed enzyme in both pathways. A core set of commonly occurring unannotated protein products was identified as promising targets for future biochemical investigation. Physicochemical and energetic principles governing anaerobic methane oxidation were incorporated into a reaction transport model that was applied to putative settings on ancient Mars. Many conditions enabled exergonic model reactions, marking the metabolism and its attendant biomarkers as potentially promising targets for future astrobiological investigations. This set of inter-related investigations targeting methane metabolism extends the known and potential habitat of methanotrophic microbial communities and provides a more detailed understanding of their activity and functional diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial sulfur cycling communities were investigated in two methane-rich ecosystems, terrestrial mud volcanoes (TMVs) and marine methane seeps, in order to investigate niches and processes that would likely be central to the functioning of these crucial ecosystems. Terrestrial mud volcanoes represent geochemically diverse habitats with varying sulfur sources and yet sulfur-cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in 4 TMVs in Azerbaijan, supporting the presence of active sulfur-oxidizing and sulfate-reducing guilds in all 4 TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. We also found evidence for the anaerobic oxidation of methane coupled to sulfate reduction, a process which we explored further in the more tractable marine methane seeps. Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps, however the ecophysiology of these different symbiotic associations has not been examined. Using a combination of molecular, geochemical and fluorescence in situ hybridization coupled to nano-scale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations, we show that the unexplained diversity in SRB associated with ANME cells can be at least partially explained by preferential nitrate utilization by one particular partner, the seepDBB. This discovery reveals that nitrate is likely an important factor in community structuring and diversity in marine methane seep ecosystems. The thesis concludes with a study of the dynamics between ANME and their associated SRB partners. We inhibited sulfate reduction and followed the metabolic processes of the community as well as the effect of ANME/SRB aggregate composition and growth on a cellular level by tracking 15N substrate incorporation into biomass using FISH-NanoSIMS. We revealed that while sulfate-reducing bacteria gradually disappeared over time in incubations with an SRB inhibitor, the ANME archaea persisted in the form of ANME-only aggregates, which are capable of little to no growth when sulfate reduction is inhibited. These data suggest ANME are not able to synthesize new proteins when sulfate reduction is inhibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.

Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.

The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All major geochemical cycles on the Earth’s surface are mediated by microorganisms. Our understanding of how these microbes have interacted with their environments (and vice versa) throughout Earth's history, and how they will respond to changes in the future, is primarily based on studying their activity in different environments today. The overarching questions that motivate the research presented in the two parts of this thesis -- how do microorganisms shape their environment (and vice versa)? and how can we best study microbial activity in situ? -- have arisen from the ultimate goal of being able to predict microbial activity in response to changes within their environments both past and future.

Part one focuses on work related to microbial processes in iron-rich Lake Matano and, more broadly, microbial interactions with the biogeochemical cycling of iron. Primarily, we find that the chelation of ferrous iron by organic ligands can affect the role of iron in anoxic environmental systems, enabling photomixotrophic growth of anoxygenic microorganisms with ferrous iron, as well as catalyzing the oxidation of ferrous iron by denitrification intermediates. These results imply that the ability to grow photomixotrophically on ferrous iron might be more widespread than previously assumed, and that the co-occurrence of chemical and biological processes involved in the coupled biogeochemical cycling of iron and nitrogen likely dominate organic-rich environmental systems.

Part two switches focus to in situ measurements of growth activity and comprises work related to microbial processes in the Cystic Fibrosis lung, and more broadly, the physiology of slow growth. We introduce stable isotope labeling of microbial membrane fatty acids and whole cells with heavy water as a new technique to measure microbial activity in a wide range of environments, demonstrate its application in continuous culture in the laboratory at the population and single cell level, and apply the tool to measure the in situ activity of the opportunistic pathogen Staphylococcus aureus within the environment of expectorated mucus from cystic fibrosis patients. We find that the average in situ growth rates of S. aureus fall into a range of generation times between ~12 hours and ~4 days, with substantial heterogeneity at the single-cell level. These data illustrate the use of heavy water as a universal environmental tracer for microbial activity, and highlight the crucial importance of studying the physiology of slow growth in representative laboratory systems in order to understand the role of these microorganisms in their native environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygenic photosynthesis fundamentally transformed our planet by releasing molecular oxygen and altering major biogeochemical cycles, and this exceptional metabolism relies on a redox-active cubane cluster of four manganese atoms. Not only is manganese essential for producing oxygen, but manganese is also only oxidized by oxygen and oxygen-derived species. Thus the history of manganese oxidation provides a valuable perspective on our planet’s environmental past, the ancient availability of oxygen, and the evolution of oxygenic photosynthesis. Broadly, the general trends of the geologic record of manganese deposition is a chronicle of ancient manganese oxidation: manganese is introduced into the fluid Earth as Mn(II) and it will remain only a trace component in sedimentary rocks until it is oxidized, forming Mn(III,IV) insoluble precipitates that are concentrated in the rock record. Because these manganese oxides are highly favorable electron acceptors, they often undergo reduction in sediments through anaerobic respiration and abiotic reaction pathways.

The following dissertation presents five chapters investigating manganese cycling both by examining ancient examples of manganese enrichments in the geologic record and exploring the mineralogical products of various pathways of manganese oxide reduction that may occur in sediments. The first chapter explores the mineralogical record of manganese and reports abundant manganese reduction recorded in six representative manganese-enriched sedimentary sequences. This is followed by a second chapter that further analyzes the earliest significant manganese deposit 2.4 billon years ago, and determines that it predated the origin of oxygenic photosynthesis and thus is supporting evidence for manganese-oxidizing photosynthesis as an evolutionary precursor prior to oxygenic photosynthesis. The lack of oxygen during this early manganese deposition was partially established using oxygen-sensitive detrital grains, and so a third chapter delves into what these grains mean for oxygen constraints using a mathematical model. The fourth chapter returns to processes affecting manganese post-deposition, and explores the relationships between manganese mineral products and (bio)geochemical reduction processes to understand how various manganese minerals can reveal ancient environmental conditions and biological metabolisms. Finally, a fifth chapter considers whether manganese can be mobilized and enriched in sedimentary rocks and determines that manganese was concentrated secondarily in a 2.5 billion-year-old example from South Africa. Overall, this thesis demonstrates how microbial processes, namely photosynthesis and metal oxide-reducing metabolisms, are linked to and recorded in the rich complexity of the manganese mineralogical record.