4 resultados para Martin, Joseph W. (Joseph William), 1884-1968

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is in two parts. In the first part we give a qualitative study of wave propagation in an inhomogeneous medium principally by geometrical optics and ray theory. The inhomogeneity is represented by a sound-speed profile which is dependent upon one coordinate, namely the depth; and we discuss the general characteristics of wave propagation which result from a source placed on the sound channel axis. We show that our mathematical model of the sound- speed in the ocean actually predicts some of the behavior of the observed physical phenomena in the underwater sound channel. Using ray theoretic techniques we investigate the implications of our profile on the following characteristics of SOFAR propagation: (i) the sound energy traveling further away from the axis takes less time to travel from source to receiver than sound energy traveling closer to the axis, (ii) the focusing of sound energy in the sound channel at certain ranges, (iii) the overall ray picture in the sound channel.

In the second part a more penetrating quantitative study is done by means of analytical techniques on the governing equations. We study the transient problem for the Epstein profile by employing a double transform to formally derive an integral representation for the acoustic pressure amplitude, and from this representation we obtain several alternative representations. We study the case where both source and receiver are on the channel axis and greatly separated. In particular we verify some of the earlier results derived by ray theory and obtain asymptotic results for the acoustic pressure in the far-field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sudden axial acceleration of a column of liquid bounded at one end by a concave free surface has been found, experimentally, to produce a jet which issues from the free surface with a speed several times that imparted to the column.

Theoretical approximations to such flows, valid for small time, are formulated subject to the assumption that the fluid is inviscid and incompressible. In a special two-dimensional case, it is found that, for vanishingly small time, the velocity at the point on the free surface from which the jet emanates is π/2 times the velocity imparted to the column. The solutions to several problems in two and three dimensions assuming that the initial curvature of the free surface is small, lead to values for this ratio dependent upon the curvature—the initial velocity in the case of axial symmetry exceeding that of the analogous two-dimensional problem by approximately 25%.

Experiments conducted upon the phenomenon give values systematically in excess of those predicted by the theory, although theory and experiment are in qualitative agreement with respect to the displacement of the free surface. It is suggested that the discrepancy is attributable to effects of finite curvature having been imperfectly accounted for in the axially-symmetric analysis.

Photographic materials on pp. 115, 120, and 121 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

The mechanism of the hydroformylation reaction was studied. Using cobalt deuterotetracarbonyl and 1-pentene as substrates, the first step in the reaction, addition of cobalt tetracarbonyl to an olefin, was shown to be reversible.

Part II

The role of coenzyme B12 in the isomerization of methylmalonyl coenzyme A to succinyl coenzyme A by methylmalonyl coenzyme A mutase was studied. The reaction was allowed to proceed to partial completion using a mixture of methylmalonyl coenzyme A and 4, 4, 4-tri-2H-methylmalonyl coenzyme A as substrate. The deuterium distribution in the product, succinyl coenzyme A, was shown to best fit a model in which hydrogen is transferred from C-4 of methylmalonyl coenzyme A to C-5’ of the adenosyl moiety of coenzyme B12 in the rate determining step. The three hydrogens at the 5’-adenosyl position of the coenzyme B12 intermediate are then able to become enzymatically equivalent before hydrogen is transferred from the coenzyme B12 intermediate to form succinyl coenzyme A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.

The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.

A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.

II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.